EMERGENCE AND
EVOLUTION OF PATTERNS

Harry L. Swinney
Center for Nonlinear Dynamics and Department of Physics
University of Texas, Austin, TX 78712 USA
(swinney@chaos.ph.utexas.edu)

Abstract. We consider macroscopic systems driven away from thermodynamic equi-
librium by an imposed gradient in temperature, velocity, or concentration. For a suf-
ficiently small imposed gradient, a system will assume (asymptotically) the symmetry
of the boundary conditions. However, when the imposed gradient exceeds a critical
value, a system will spontaneously break the symmetry of the boundary conditions and
form a spatial pattern. In two dimensions the pattern could be traveling waves (e.g.,
spirals) or an array of squares, stripes, or hexagons. With larger imposed gradients,
the patterns can become more complex and even disordered in both space and time.
We discuss the general principles of pattern formation in systems driven away from
equilibrium and illustrate the principles with examples from experiments.

NEAR EQUILIBRIUM: THE BASE STATE

We consider macroscopic systems such as fluids, liquid crystals, reacting chemical
liquids or gases, solids, and biological systems, which are driven away from ther-
modynamic equilibrium. The systems are dissipative — energy must be supplied
through the imposition of a gradient (e.g., in temperature, velocity, or concen-
tration) to maintain the system away from equilibrium. The distance away from
equilibrium can often be characterized by one or more dimensionless control pa-
rameters, e.g., the Reynolds number for a fluid, R = VL/v for a fluid flow with a
characteristic velocity V, length scale L, and kinematic viscosity v.

The dynamical behavior of macroscopic systems driven away from thermody-
namic equilibrium is usually governed by partial differential equations. Again tak-
ing a fluid as an example, the equation of motion for the velocity field u(r,¢) and
the pressure field p(r,t) is the Navier-Stokes equation,

ou 1,
E#—(u-V)u-—V;fH— EV u, (1)

which is Newton’s second law for a continuum fluid. For an incompressible fluid,
we also have
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V-u=0. (2)

Equations (1) and (2) are dimensionless — u, r, ¢, and p are expressed in units
of V, L, L/V, and pV? Thus two systems with the same geometry but with
a different size, velocity scale, and viscosity will behave in the same way if the
Reynolds numbers are the same.

Even when a system is driven so far from equilibrium that the behavior becomes
chaotic or turbulent, varying erratically in space and time, the system is still usu-
ally completely described by deterministic equations of motion such as (1), i.e.,
stochastic effects such as thermal fluctuations are usually negligible.

The solution of the nonlinear equation of motion near equilibrium is called the
base state. For simple geometries the base state can usually be determined ana-
lytically, while for complicated geometries the base state must be determined nu-
merically. The base state has the symmetry of the boundary conditions; hence for
time-independent boundary conditions, the base state is time independent. Suffi-
ciently close to equilibrium, the base state is stable — any perturbation, no matter
how large, will decay and the system will asymptotically approach the base state.
For sufficiently small R, any initial condition will evolve to the base state; in con-
trast, for large R, the uniqueness property is lost, and there may be several or even
many different stable solutions for a given R.

INSTABILITY OF THE BASE STATE

We now consider the linear stability of the base state solution u(r,t). If an
infinitesimal perturbation of the base state, Ju(r,t) = Ae’%e’**, decays, then the
base state is stable with respect to small perturbations. As the distance away from
equilibrium increases, a critical value of R, R,, is reached where the growth rate
of the perturbation is zero at a wavenumber k., and for R > R,, the perturbation
grows, as Fig. 1(a) illustrates. R, can be found by solving the equation of motion,
linearized in du. The base state loses stability at K. and the solution spontaneously
loses the symmetry of the boundary conditions — perturbations at wavenumber k,
grow, developing into a spatial pattern with wavelength A = 27 /k..

In 1923, G. I. Taylor conducted a linear stability analysis of flow between con-.
centric rotating cylinders [1]. The base state for this system is an axisymmetric
velocity field that is invariant under translation in the axial direction. Only the
azimuthal component of the velocity is nonzero, ug = Ar + B/r, where the con-
stants A and B are determined by the no-slip boundary conditions at the inner
and outer cylinders, up(r;) = Qi1 and ug(re) = Qara, where the subscripts 1 and
2 correspond to the inner and outer cylinders, respectively. Taylor calculated the
critical values of the cylinder rotation rates (1, £23) where the base state becomes
unstable. Taylor also built a concentric cylinder apparatus and used dye to visu-
alize the flow patterns that form at the critical rotation rates. He observed that
beyond the onset of the instability, axisymmetric toroidal vortices form, encircling

Downloaded 30 Oct 2003 to 128.83.156.150. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



o(0) AR

/ Kc \ K
<«1-R>Rc

“«-R=Rc

\ <«1-R < Rc \

(a) (b)
FIGURE 1. (a) Growth rate of a perturbation, o(k), as a function of wavenumber for Reynolds
numbers below, at, and above the onset of instability. (b) The amplitude of the mode that
becomes unstable at R = R.. The transition at R, is called a pitchfork bifurcation. The base
state remains a solution of the equation of motion for R > R., but it is no longer stable.

the inner cylinder. The vortices are stacked like a pile of doughnuts in the axial
direction; at a boundary between one vortex pair, fluid flows inward towards the
inner cylinder, while at the next boundary in either axial direction, fluid flows out-
ward towards the outer cylinder. The observed wavelength of a pair of vortices
agreed well with the value calculated from the linear stability analysis. Moreover,
Taylor found remarkable agreement between the predictions of the stability analysis
and the laboratory observations, as Fig. 2 shows. This was the first experimental
test of a linear stability analysis for any system driven away from equilibrium. As
Taylor said, “All [previous] attempts to calculate the speed at which any type of
flow would become unstable have failed” [1].

The procedure for finding the instability of the base state is straightforward,
but in practice there can be subtleties in both experiments and in analyses. For
example, one of the earliest instabilities studied in experiments was a thin layer
of fluid heated from below. Nearly a century ago Henri Bénard [2] discovered
that hexagonal convection cells form at a well-defined threshold; one of Bénard’s
photographs is shown in Fig. 3(a). In 1916, Rayleigh conducted a linear stability
analysis for the problem, assuming that buoyancy effects caused the convection,
but the threshold that Rayleigh predicted did not agree with Bénard’s observations
[3] (note that Rayleigh’s analysis of convection preceded Taylor’s analysis of flow
between cylinders). Forty years elapsed before it was recognized that the instability
observed by Bénard was not caused by buoyancy but by surface tension gradients
[4]. Even then, experiments remained in disagreement with theory until recently,
when the experimental difficulties were finally resolved; the observations shown in
Fig. 3(b) are in good accord with theory [5].

When the growth rate of a perturbation, o (Eq. (3)), is complex rather than
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FIGURE 2. G.I. Taylor’s stability diagram for flow between concentric cylinders with the inner
cylinder rotating with angular velocity ; and the outer cylinder rotating with angular velocity
Q. The solid dots are Taylor’s measurements and the open circles are from Taylor’s linear stability
analysis. The cylinders are co-rotating in the right-hand quadrant and counter-rotating in the
left-hand quadrant; 0 corresponds to thermodynamic equilibrium. Reprinted with permission
from the Phil. Trans. Roy. Soc. [1].
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FIGURE 3. Hexagonal convection patterns observed in thin liquid layers heated from below:
(a) Bénard (1900) [2] and (b) Schatz et al. (1995) [5].
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real, instability of the uniform state leads to an oscillatory rather than stationary
secondary state. The pattern that forms at the instability often consists of traveling
waves in the form of spirals. Rotating spirals were observed in a chemical reaction-
diffusion system more than two decades ago. The chemical reagents were poured
into a petri dish, and a pattern with many rotating spirals formed and evolved as
the chemicals were consumed [6]. Spiral wave patterns have also been observed
in convecting fluids [7], Xenopus oocytes (the spirals in these frog eggs are waves
of calcium concentration) [8], heterogeneous catalysis [9], and even heart muscle
[10] (where the interest is motivated by a possible connection with sudden cardiac
death [11,12]).

A linear stability analysis yields the critical parameter value at which a base state
becomes unstable, but perturbation theory must be used to determine how the
amplitude A of the the most unstable mode (the mode with wavenumber k) varies
above the instability threshold. In the simplest cases it is sufficient to truncate the
amplitude expansion at cubic order,

dA

—— =0A+bA3 3
s (3)
where the quadratic term is absent because the cubic term is the lowest order term
that feeds back on the unstable mode. Expanding the coefficients about R, we.

have
o(R)=09g+ 0y (R— Re) + -, (4)
b(R) =bg +b;(R— R.)+---. (5)
Since o(R.) = 0y = 0,
%_1? :Ul(R—RC)A+b0A3, (6)

where by < 0 for stability (for by > 0, higher order terms would be needed for
stability), and oy > 0 since the system is unstable for R > R,. The steady state
amplitude, dA/dt = 0, is given by

Ax\JE- R )

The square-root growth in the amplitude of the secondary state is illustrated in
Fig. 1(b). This square-root growth of the amplitude has been confirmed in many
experiments, e.g., for Taylor vortex flow, see [13]. '

Beyond the threshold of instability there is a band of unstable wavenumbers
(cf. Fig. 1(a)) and the amplitude A(r,t) of the pattern can vary slowly in space
and time. For a given type of instability, there is universal form for the equation
describing the amplitude near threshold. For example, a pattern of two-dimensional
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stationary rolls (also called stripes) that emerges at an instability from a uniform
state is governed by

0A R-R. (0 i & 2
Togt‘—‘ﬁc—A‘f'fo (%‘%@)A—!}o'm A, (8)

where the constants 7y, &, k., and go depend on the detailed properties of individual
systems [14]; in principle these constants can be derived from the equations of
motion, but this has been done for only a few cases. Much has been learned from
comparison of predictions of amplitude equations with experiments (see especially
the work on Rayleigh-Bénard convection, that is, fluid convection in a box heated
from below [15]).

The possibility that instability could lead to the spontaneous formation of spatial
patterns in chemical systems was first proposed in 1952 by Alan Turing in a paper
entitled “The Chemical Basis of Morphogenesis” [16]. Turing considered systems
of reaction and diffusing chemical species, governed by

% _ pyze +£,(c), 9)

ot
where c(r, ) is a vector of concentrations of different species, D is the diffusion
coefficient matrix, f is a function describing the chemical kinetics (nonlinear in the
cases of interest), and p represents the control parameters (e.g., reagent, concentra-
tions, temperature) [17]. Turing said, “Such a system, although it may originally
be quite homogeneous, may later develop a pattern or structure due to an insta-
bility of the homogeneocus equilibrium.” Turing’s analysis stimulated considerable
theoretical research on mathematical models of pattern formation in chemical and
biological systems (e.g., see [18]), but Turing-type patterns were not observed in
controlled laboratory experiments until 1990 [19]. The absence of experiments was
due to a lack of a device in which a reaction-diffusion system could be maintained
in well-defined nonequilibrium conditions. Such a device was developed in the late
1980s [20-23]. Tt is simply a thin gel layer with its surfaces in contact with well-
stirred reservoirs that are continuously refreshed. This type of reactor was used to
observe the Turing patterns shown in Fig. 4 [22]. As a control parameter (reagent
concentration or temperature) was varied, a critical value was reached where there
was a spontaneous transition from a uniform (nonpatterned state) to the hexago--
nal pattern shown in Fig. 4(a). At other reagent concentrations, patterns of stripes
rather than hexagons form; see Fig. 4(b).

What sets the length scale in the patterns in nonequilibrium systems? The size
of the lattice constant in a crystalline lattice is determined by the atomic potential,
but the length scales in patterns such as in Figs. 3 and 4 are many times larger.
In fluid patterns the length scale is determined by the geometry. For example,
a toroidal Taylor vortex near the onset of instability in flow between concentric
rotating cylinders has an axial length very nearly equal to the gap between the
cylinders. For chemical patterns the wavelength A is determined not by the ge-
ometry but by the intrinsic properties of the reaction-diffusion system: A x v/ D7,
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FIGURE 4. (a) Hexagonal and (b) stripe patterns of chemical concentration that form spon-
taneously in a continuously fed laboratory thin gel reactor. The darker regions represent higher
concentrations of triiodide, which is one of the species in the reaction. Each image is 1 mm x1
mm. Reprinted by permission from Nature [http://www.nature.com], copyright 1994, Macmillan
Magazines Ltd. [22].

where D and 7 are a characteristic diffusion coefficient and time scale (e.g., a period
of an oscillation of the homogeneous reaction) [23].

Bifurcations from a spatially uniform state to stationary arrays of hexagons,
stripes, and squares have been observed in many systems, e.g., hexagonal arrays like
those in Figs. 3 and 4 have recently been observed in an optical beam in a nonlinear
medium [24] and in a gas of electrons in a strong magnetic field [25]. Another
example is shown in Fig. 5: a vertically oscillated layer of liquid spontaneously
forms stationary surface wave patterns when the acceleration amplitude exceeds a
critical value; the patterns at the onset of instability can be squares or stripes, as
Fig. 5 illustrates.

FAR BEYOND THE ONSET OF INSTABILITY:
EXPERIMENTS, SIMULATIONS, AND SYMMETRY

Perturbation theory provides a satisfactory description of the transition from a.
uniform state to spatial patterns in systems driven away from equilibrium, as de-
scribed in the previous section. However, at control parameter values far beyond
that at which the base state becomes unstable, perturbation theory fails. Experi-
ments and numerical simulations reveal (for increasing R or other relevant control
parameters) secondary and higher instabilities, each of which leads to a spatiotem-
poral pattern that breaks a space and/or time symmetry of the previous state. This
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FIGURE 5. (a) Square and (b) stripe standing wave patterns in a vertically oscillated layer of
liquid just below the liquid-vapor critical point; (a) is at 0.08K below the critical temperature
and (b) is at 0.02K below the critical temperature [26]. The cell diameter is 10 mm, the container
oscillation frequency is 60 Hz, and the fluid is carbon dioxide.

cascade of instabilities often leads ultimately to states that are disordered in both
space and time, even turbulent.

There is no general theory to describe the behavior of systems far beyond pri-
mary instability. In contrast to equilibrium systems, there is no function like the
free energy that can be determined and minimized to find the state of a nonequi-
librium system for a given set of control parameters. The many attempts to find
an extremum principle for systems far from equilibrium have all failed. However,
it is just this regime far from equilibrium that is often of interest in nature and
technology, where one would like to be able to predict the behavior of, e.g., the
atmosphere and oceans (weather and climate), combustion, mixing and separation
processes, and biological systems.

In the absence of a general theory, experiments and simulations provide a guide to
the kinds of phenomena that can occur. Figure 6 is an experimentally determined
phase diagram showing the instabilities observed in flow between independently
rotating cylinders [27]. The curve marking the primary instability (the lowest
curve) is the one determined by Taylor (cf. Fig. 2).

Very little is understood about the different regimes shown in Fig. 6, especially
those well beyond the primary instability. But one might argue that since we know
the equation of motion, the problem is really solved. This is not true. The Navier-
Stokes equation has been known for more than a century, but, despite a century of
theoretical interest in flow between concentric cylinders, there was no hint of the
complex phase diagram shown in Fig. 6 until it was determined in experiments.
Thus knowledge of the equations of motion is not enough. Freeman Dyson recently
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FIGURE 6. Regimes observed in flow betweeen concentric independently rotating cylinders. R;
and R, are Reynolds numbers proportional to the rotation rates of the inner and outer cylinders
respectively. The phase diagram is different for cylinders of different radius ratios; this diagram
is for cylinders with radius ratio 7/8. Reprinted with permission from J. Fluid Mech., Cambridge
University Press [27].

made this point [28]:

Oppenheimer in his later years believed that the only problem worthy of
the attention of a serious theoretical physicist was the discovery of the
fundamental equations of physics. Einstein certainly felt the same way.
To discover the right equations was all that mattered. Once you had
discovered the right equations, then the study of particular solutions of
the equations would be a routine exercise for second-rate physicists or
graduate students. ... It often happens that the understanding of the
mathematical nature of an equation is impossible without a detailed un-
derstanding of its solutions. The black hole is a case in point. One could
say without exaggeration that Einstein’s equations of general relativity
were understood only at a very superficial level before the discovery of
the black hole.

One could even go further — knowledge of the solutions of the equations of mo-
tion may not be enough. Philip Holmes found this was the case in his analysis of
the constrained Fuler buckling problem [29]. The solution he obtained, involving
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pages of elliptic integrals, did not provide much insight. The bifurcation structure
for this problem was not understood until the bifurcations were identified in numer-
ical simulations; then the mathematical solution could be examined to determine
the behavior in the neighborhood of each bifurcation. Holmes’ point is that exper-
iments or simulations are often still needed, even when a closed form solution is
known.

Experiments and numerical simulations of models help in understanding the
kinds of bifurcations and patterns that can occur far from equilibrium. By “mod-
els” we mean systems of nonlinear partial differential equations that are simpler
and hence easier to explore numerically and analytically than the full equations of
motion (e.g., the Navier-Stokes equation). Amplitude equations such as Eq. (8)
become models (often called complex Ginzburg-Landau models) when studied be-
yond the range where perturbation theory is applicable. Two other models that
have been widely studied are the Swift-Hohenberg equation and the Kuramoto-
Sivashinsky equation [14].

Figure 7 shows a phenomenon that, after it was observed in a laboratory experi-
ment, led to the kind of interplay between model studies and laboratory experiments
that is typical in investigations of nonequilibrium systems. The figure illustrates
the development of a transverse instability of a chemical front. The instability was
discovered in a search for Turing patterns in experiments on a reaction-diffusion
system that had not been previously studied [30]. Several reaction-diffusion mod-
els with two species were then examined to search for a similar front instability.-
The laboratory reaction is much more complex than the two species models; five
chemical species are fed to the laboratory reactor, and the reaction produces many
intermediate species and reaction products. However, each of the studies of models
with only two species yielded a front instability similar to that illustrated by Fig. 7
[31-34].

One of the simulations that yielded a front instability revealed another phe-
nomenon that had not been seen in the experiments: patterns of spots (domains
with a chemical concentration different from the background) that undergo a con-
tinuous process of “birth” through replication and “death” through overcrowding
[33]. A search for this phenomenon in laboratory experiments was successful, as
Fig. 8 shows. Morever, the experiments show that if a spot is isolated, it grows
until the center drops back into the low pH state, thus forming a doughnut-like
pattern. A subsequent study revealed this behavior in the numerical simulations
as well. Front instabilities are common in systems far from equilibrium, but fur-
ther experiments, simulations, and analyses are needed to determine what general
lessons can be gleaned from the studies of the chemical fronts shown in Figs. 7 and
8.

An analysis of the consequence of symmetries can lead to insights into particular
instabilities and to general insights on pattern formation [36]. An example of
use of symmetry to analyze the stability of a particular flow is a study by Iooss
[37], who considered what symmetries would be possible for secondary flows that
bifurcate from Taylor vortex flow, given the possible axial reflection and translation
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FIGURE 7. Time evolution of pattern observed in a bistable reaction-diffusion system (a fer-
rocyanide-iodate-sulfite reaction). The white state has low pH (about 4) and the black state has
high pH (about 7). There is a transverse instability of the front that separates the black and white
states, and the front evolves until at 3 hours (last picture) a stable, stationary labyrinthine pat-
tern is achieved. Reprinted with permission from Science, copyright 1993, American Association

for the Advancement of Science (30].
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FIGURE 8. Replicating spot patterns in a laboratory experiment (upper row) and in a numer-
ical simulation of a two-species model (lower row). In the experiment, the darker regions have
higher pH (about 7) than the lighter regions (about pH 3). Reprinted by permission from Nature
[http://www.nature.com], copyright 1991, Macmillan Magazines Ltd. [35].

FIGURE 9. Secondary flows arising from instability of Taylor vortex flow: wavy vortex flow
with waves on all vortex boundaries, (b) wavy inflow boundaries, and (c) “twisted” vortices
(waves in the vortex core but not on the vortex boundaries). The flow is visualized using a dilute
suspension of small flat flakes (Kalliroscope). Reprinted with permission from J. Fluid Mech.,
Cambridge University Press [27].

symmetries. The selection rules derived from symmetry yielded only four possible
states, which were just the four states found in an experiment [27]: vortices with
waves on both the inflow and outflow boundaries (Fig. 9(a)), vortices with waves
on only the inflow boundaries (Fig. 9(b)), vortices with waves on only the outflow
boundaries (not shown), and vortices with flat inflow and outflow boundaries with
waves in the vortex core (Fig. 9(c)).

Another example of use of symmetry is illustrated in Fig. 10, which shows a se-
quence of images of disordered surface wave patterns, where the spatial correlations
extend only about one wavelength [38,39]. However, an analysis by Dellnitz et al.
[40] predicted that, even though the instantaneous patterns may have no apparent.
order, the time-averaged patterns should exhibit the symmetry of the boundaries;
the time-averaged pattern in Fig. 10 is in accord with this prediction.

For some systems there are no equations of motion or even mathematical mod-
els, and one must rely on experiment to determine what kinds of phenomena can
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FIGURE 10. A sequence of disordered surface wave patterns observed in a vertically oscil-
lated liquid layer. The individual pictures are snapshots, illustrating the lack of order, but the
time-averaged pattern at the bottom left has the symmetry of the container. Reprinted with
permission from Proc. Natl. Acad. Sci., USA, copyright 1995, National Academy of Sciences,
USA [39].
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occur. Vertically oscillated containers of small particles are a good example. Con-
tinuum models have succesfully described some patterns observed in these systems,
but thus far the models have had limited predictive value. Experiments on thin
granular layers in evacuated containers, conducted as a function of the acceleration
amplitude and frequency, yield a bifurcation structure every bit as rich as that in
flow between concentric rotating cylinders (cf. Fig. 6)[41}-[42]. When the accel-
eration amplitude exceeds g, the gravitational acceleration, the layer of particles
leaves the container for part of the cycle. The layer remains flat until the accel-
eration reaches about 2.5¢, where spatial patterns spontaneously form, squares at
low frequencies and stripes at high frequencies; see Fig. 11. At higher acceleration
amplitudes, hexagons and a variety of more complex patterns form. Stable, local-
ized, standing wave structures form when the acceleration is decreased just slightly
below the critical value at which patterns first form with increasing acceleration
amplitude. Some of these localized structures are shown in the lower row in Fig. 11.
We have not discussed chaos or routes to chaos. Systems described by a few cou-
pled ordinary differential equations are described by low dimensional phase space
attractors, and these systems often exhibit bifurcation sequences that have univer-
sal properties, e.g., the period doubling route to chaos, a periodic to quasiperiodic
to chaotic sequence, and intermittency [43]. However, in the spatially extended
systems of interest here, low dimensional attractors and the routes to chaos are not
usually observed, except for small systems (only a few characteristic wavelengths in
size) not too far beyond the primary instability. Nevertheless, dynamical systems
concepts such as strange attractors, fractal basin boundaries, multiplicity (multiple
stable states for the same control parameters), are often helpful in interpreting the
behavior of spatially extended systems, especially in the parameter range where
disorder first develops as the system is driven beyond the primary instability.

PERSISTENCE OF ORDER

Very far from equilibrium (R > 1), a flow becomes turbulent, disordered in space
and time and exhibiting a wide range of spatial scales. Yet a surprising degree of
order often persists. Figure 12 shows turbulent Taylor vortices at a value of R
nearly two orders of magnitude larger than that at which Taylor vortices first form
[44]. The vortices are clearly discernible, and they are still apparent when R is
increased by another order of magnitude.

The Great Red Spot of Jupiter is another example of the persistence of order
in a turbulent flow. This large vortex was first observed by Robert Hooke in
1664 [45]. The width of the vortex is about twice the diameter of the earth, and
typical velocities are of order 50 m/s; hence the Reynolds number is enormous.
The pictures obtained by Voyager 2 in 1979 and Galileo in 1996 show that the
Jovian atmosphere is strongly turbulent. There are many long-lived vortices in
the eastward and westward jets in the Jovian atmosphere; the Great Red Spot is
just the largest of the vortices. The earth’s atmosphere is also at high Reynolds

Downloaded 30 Oct 2003 to 128.83.156.150. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



FIGURE 11. Patterns formed in a vertically oscillated thin layer of bronze spheres (0.16 mm
in diameter) in a 127 mm diameter container. Top left, squares (3.2g,20 Hz); top right, stripes
{3.3g,67 Hz); center left, hexagons (4.0g, 67 Hz); each image is 50 mm x 50 mm [41]. The image
on the right in the center row shows a layer with two localized standing wave structures (oscillons)
of opposite phase; the white dot is seen as a peak when viewed from the side (upper image on the
bottom left), while the black dot is a crater (lower image on the bottom left). The pictures on
the lower right show bound states (oscillon “molecules”) — a tetramer, a dimer, and a polymer
chain [42].
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FIGURE 12. Turbulent flow between concentric cylinders with the inner cylinder rotating and-
the outer cylinder at rest [44]. Four vortex pairs are discernible. R = 7600 = 92R,.

number. Coherent structures are readily apparent on a weather map, which shows
large cyclonic low pressure vortices and anti-cyclonic high pressure vortices, and a
wavy jet stream which encircles the globe in the stratosphere at middle latitudes.

‘The persistence of coherent vortices and jets in strongly turbulent flows can pro-
foundly affect the transport properties of the flow. A recent experiment on a rapidly
rotating flow containing jets and vortices showed that, for the case examined, the
mean square displacement of tracer particles, ((6r)?), did not vary linearly with’
time as in normal diffusive processes, rather, ((6r)%) o< t” with v = 1.6 [46,47].
The persistent coherent structures were responsible for this “anomalous diffusion”:
particles would become trapped for a while in a vortex and then escape and travel
very long distances in a jet. By tracking large numbers of individual particles it
was possible to determine the probability distribution function for a single step of
length L. The result was P(L) oc L™* with p = 2.2 for the case examined. Hence
the mean square step size, < L? >= [ L2P(L)dL, diverged and the central limit
theorem could not be used to analyze the transport.

Probability distribution functions with divergent second moments were studied
by Paul Lévy, starting in the 1930s, and applied to physical systems by Scher,
Shlesinger, and Montroll a half century later [48]. The experiment described in the
previous paragraph was the first to directly observe “Lévy flights”, which lead to a
probability distribution function with a divergent second moment. The experiment,
was conducted on a simple isothermal flow with circularly symmetric forcing and
circularly symmetric boundaries. This is a far cry from a real ocean or atmosphere,
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but the persistence of order (i.e., jets and vortices) in planetary flows may lead
to mixing properties rather different from those described by normal diffusive pro-
cesses. In some cases the jets and vortices could Icad to greatly enhanced mixing.
In other cases, the persistent structures could lead to barriers to transport, perhaps
analogous to the invariant curves (KAM tori) in Hamiltonian dynamical systems
[49].

PROSPECTS

As we have described, the nonlinear partial differential equations governing a
macroscopic system driven away from thermodynamic equilibrium can be solved
for a base state, which is always stable sufficiently close to equilibrium. The sta-
bility of the base state can be determined by solving a linear equation involving
an infinitesimal perturbation of the base state. At a critical control parameter
value, the base state becomes unstable and spatial structure emerges with a wave-
length 27 /k., which is determined from the linear stability analysis. The form of
the pattern that emerges and the development of this pattern with increasing con-
trol parameter can be determined from a weakly nonlinear perturbation analysis
(“amplitude equations”).

Far beyond the primary instability, each system behaves differently. Details
matter, as Langer has emphasized [50]. There is no universality. However, the
situation is not bleak. While there are no universal sequences leading to complex
spatiotemporal behavior, similar bifurcations and patterns are frequently found in
numerical simulations of simple models and in experiments on diverse systems.
Simulations, experiments, and analyses are providing concepts and tools that are
broadly applicable to systems driven far from equilibrium.

The study of nonequilibrium systems is inherently interdisciplinary. The prob-
lems often cross the boundaries of the traditional disciplines of mathematics,
physics, chemistry, biology, or engineering. Important mathematical questions
remain open, for example, what is the fundamental difference between patterns
formed in a bounded (or periodic) domain, where the differential equations have
compact groups of symmetry, and patterns formed in systems where boundaries
are unimportant, where the equations have noncompact symmetry groups? One
general area of applications concerns the control of industrial processes, which usu-
ally operate far from thermodynamic equilibrium. To produce more product, larger
gradients are imposed, thus driving a system further from equilibrium and leading
to instabilities and loss of control. Methods are now being developed to control
processes in far from equilibrium conditions, even on unstable states remote in
phase space from the attractor for a given set of control parameters; this would
be desirable in situations where the unstable state is more efficient than the stable
state [51]. ,

In closing, we raise the question of whether or not the study of the emergence
of patterns in systems driven away from equilibrium is a “fundamental” problem.
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It does not involve questions regarding the fundamental interactions between par-
ticles, but it does seem fundamental in the sense stated by Philip Anderson in his
essay, “More is Different” [52]:

The ability to reduce everything to simple fundamental laws does not
imply the ability to start from those laws and reconstruct the universe.

at each level of complexity entire new properties appear, and the
understanding of the new behaviors requires research which I think is a
fundamental in its nature as any other.
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