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An analysis of stationary and nonstationary cellular patterns observed in premixed flames on a
circular, porous plug burner is presented. A phenomenological model is introduced, that exhibits
patterns similar to the experimental states. The primary modes of the model are combinations of
Fourier–Bessel functions, whose radial parts have neighboring zeros. This observation explains
several features of patterns, such as the existence of concentric rings of cells and the weak coupling
between rings. Properties of rotating rings of cells, including the existence of modulated rotations
and heteroclinic cycles can be deduced using mode coupling. For nonstationary patterns, the modal
decomposition of experimental data can be carried out using the Karhunen–Loe´ve ~KL ! analysis.
Experimental states are used to demonstrate the possibility of using KL analysis to differentiate
between uniform and nonuniform rotations. The methodology can be extended to study more
complicated nonstationary patterns. In particular, it is shown how the complexity of ‘‘hopping
states’’ can be unraveled through the analysis. ©1997 American Institute of Physics.
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Recent studies of pattern formation on experimental sys-
tems and mathematical models have clearly demon
strated the existence of ‘‘universal’’ features that depend
strongly on the nonlinearities of the physical system and
the geometry of the domain. Motivated by the observa-
tion of novel stationary and nonstationary cellular states
on a flame front, we develop a coherent scheme for the
analysis of cellular patterns generated on a circular do-
main. The uniform flame front can bifurcate to a variety
of cellular states depending on the size of the individual
cells. The form of these primary modes are determined
using data from experiments and also from the integra-
tion of a phenomenological model. It is demonstrated that
apparently complicated dynamics can result from the
coupling between a few principal modes.

I. INTRODUCTION

Flame patterns generated on a circular burner exhib
wide array of complex spatiotemporal states with novel f
tures. They include cells that exhibit uniform rotations,1 in-
termittent motions2 and chaotic dynamics.3,4 Realistic mod-
eling of the system combining the reaction-diffusio
equations with the appropriate fluid dynamics would, in pr
ciple, provide a panoptic description of all observed state
the system. However, the capabilities for conducting this f
midable computational task will not be available in the ne

a!Electronic mail: palacios@nomad44.laptop.uh.edu
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future. In addition, the role played by the geometry of t
system and intricate connections between distinct states
best studied in simplified models.

In this paper we demonstrate how a phenomenolog
model and bifurcation theory5 can be used to understand ce
tain aspects of cellular pattern formation on a circular fla
front. Bifurcations from the uniform~flat! flame front lead to
patterns of concentric cells through spontaneous symm
breaking. The circular geometry suggests an expansion o
broken-symmetry states in a Fourier–Bessel series. In
rameter domains where two or more distinct modes comp
their coupling can have subtle and interesting effects that
be described by the appropriate normal form theory.6 Several
properties of stationary and nonstationary cellular states
the flame front are explained as consequences of
analysis.

In the next section, we describe the experimental syst
which consists of a circular burner that produces a comb
tion front from a uniformly flowing mixture of a fuel and air
For suitable control parameters the flame front consists
cellular states, such as that shown in Fig. 1~a!. Observe that
the aspect ratio~the size of the combustion front to that o
the cells! is of the order of unity, so that the boundary co
ditions play a crucial role in the determination of the cellu
structure. Figure 1~a! shows a state with two rings of differ
ent symmetries. The inner ring contains three cells~and has
approximateD3 symmetry! while the outer ring has eigh
cells ~and is approximatelyD8 invariant!. The experiments
also show many nonstationary states like rotating rings
cells,1 hopping modes ~where three cells rotate
nonuniformly2! and ratcheting states~where two rings of
cells move intermittently with different mean rotation rates!.4

The mode-coupling theory is expected to describe
463© 1997 American Institute of Physics
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464 Palacios et al.: Cellular pattern formation
mechanisms for the generation of these states.
Figure 2~a! shows the intensity of a single rotating ce

recorded on a video tape. A suitable modal decompositio
the state would lead to an understanding of the cell shape
the origin of the motion. The preliminary analysis is carri
out on a numerically generated pattern. In Section III, a p
nomenological model is presented to study the characteri
of cellular patterns7 in a circular domain. The equations o
the model are constructed with terms that describe the do
nant physical mechanisms of the reaction and diffusion o
single species. The model is not meant to be a ‘‘realist
description of the combustion processes~a premixed flame
front contains many species, has heat loss to the burner,
produces a modification of the flow field!, and can be inte-
grated in polar coordinates using computationally effici
algorithms. Figure 1~b! shows contours of a stationary sta
from the model analogous to Fig. 1~a!, while Fig. 2~b! shows
the intensity of a single cell rotating state.

FIG. 1. ~a! Stationary pattern of cells from the experiments, and~b! the
analogous pattern from the integration of the model~3.1!. Notice that the
pattern consists of two rings with approximate symmetriesD3 andD8 .
Chaos, Vol. 7,
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Dirichlet boundary conditions chosen for the pheno
enological model suggest that the destabilization of the u
form state leads to a state whose intensity is proportiona
a Fourier–Bessel~FB! function.8 Linear and nonlinear stabil
ity analysis of this bifurcation is given in Section III. It i
found that the primary bifurcations are subcritical. In Secti
IV, examples are presented that show how the subcritica
of the primary bifurcations and proximity of certain zeros
the Bessel functions can lead to states consisting of ring
cells.

Several experimental manifestations of the mod
coupling theory are provided in the remainder of the pap
In Section V, we present examples of rotating cells bo
from the experiment and the model. The Fourier–Bessel
pansion of a single rotating cell demonstrates the existe
of two leading FB modes whose~azimuthal! frequencies are
in a ratio 1:2. The results from the numerical integrati

FIG. 2. ~a! The intensity of a single-cell rotating state, and~b! the corre-
sponding numerically generated state. The setting of the video camer
quired to view the cellular flames leads to a saturation of the intens
Consequently, the experimental data need to be filtered prior to a m
analysis.
No. 3, 1997
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465Palacios et al.: Cellular pattern formation
exhibit cellular states which rotate uniformly as well as tho
that rotate nonuniformly. In addition, dynamical states t
move on a heteroclinic cycle between a pair of two-c
states related by symmetry are presented and analyzed.

The existence of nonuniform rotating states and hete
clinic cycles was predicted by the normal form theory9–11

when the primary bifurcations are supercritical. Our resu
suggest that the bifurcation sets corresponding to subcri
and supercritical bifurcations are similar. In the Appendix
present the normal form theory which corresponds to
case when the bifurcations to pure modes~i.e., Fourier–
Bessel modes! are degenerate. The bifurcation diagram w
be structurally stable under the unfolding of the degenera
thus explaining the similarity of the subcritical and sup
critical cases.

In Section VI, we argue that the Karhunen–Loe´ve ~KL !
analysis can be used for the modal decomposition of non
tionary patterns on the flame front. It is used to differenti
between experimental states with uniform and nonunifo
rotations. It is further argued that the KL decomposition c
be used to eliminate higher dimensional effects from exp
mental data, thus allowing a direct check of the effects
mode coupling. As shown through several examples,
modal decomposition of these spatiotemporal states unra
their complexity and leads to the deduction of the appro
ate normal form equations.

In the concluding section the methodology introduc
here is used to analyze more complex dynamical state
the circular domain. Modal decompositions of ‘‘hoppin
states’’ provide the ‘‘primary’’ modes necessary for the
existence, and demonstrate the need for studying mode
plings that do not appear naturally in one-dimensio
problems.

II. THE EXPERIMENTAL SYSTEM

The experiments are conducted on a circular porous p
burner mounted in a combustion chamber kept at a pres
of 0.3–0.5 atm. The fuel and air are mixed prior to th
entrance into the porous medium.1 The uniform velocity field
produces a flat flame front, a circular luminous disk, 5.62
in diameter and 0.5 mm thick, that sits 5 mm above
porous plug. The pressure, flow rate and fuel/oxidizer ra
are controlled to within 0.1%. A Dage-MTI charge-coupl
device camera is mounted either vertically on the top of
combustion chamber or horizontally in the plane of the fla
to record the dynamics on videotape.

Beyond a critical value of a control parameter, the fla
front curves~locally!, forming patterns of concentric rings o
brighter ~hotter! cells whose boundaries are demarked
darker~cooler! cusps and folds. These cusps extend abou
mm further from the porous plug. In a typical experime
different patterns are selected by varying the flow rate
the equivalence ratio. Variations in the pressure are mad
adjust the range of the number of cells. For example, sin
rings of cells are stable at 0.3 atm, but not at 0.5 atm. Cha
ing the fuel can lead to additional patterns; ratcheting4 and
Chaos, Vol. 7,
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hopping motions2 are found in isobutane-air mixtures but n
in propane-air mixtures.

The distinctive feature of the patterns which form in pr
mixed flames on a circular porous plug burner is the comp
sequence of bifurcations from ordered patterns of concen
rings of cells to nonstationary patterns in which the rings
cells move collectively in an intricate manner. In rotatin
states, asymmetrically shaped cells rotate at a rate of
proximately 100 deg/s. In hopping states individual cells
quentially make abrupt changes in their angular positions~6
Hz!, while in ratcheting states one or more rings of~appar-
ently! symmetric cells drift slowly~1 deg/s! except for inter-
mittent jumps. These motions have only been observed
this system. In addition, the ordered states are unique am
pattern-forming systems in that the boundaries between
cells exhibit small amplitude chaotic oscillations about th
equilibrium positions.A priori, the description of these mo
tions requires high accuracy measurements of the posit
and shapes of the cells in each frame.

The height of the flame front is seen to be at a const
height at the boundary, except along a small length betw
the cells of the outer ring where it extends slightly furthe
This observation suggests the use of Dirichlet boundary c
ditions ~as an approximation! on the model equation intro
duced in the next section. A co-flow of inert nitrogen gas c
be sent through an annular disk surrounding the porous p
to reduce the shear between the premixed gas and the a
ent vacuum. However, this co-flow has never produced
observable change on the dynamic states. In some ex
ments the cellular flame front does not completely fill t
area of the porous plug, leaving a substantial region of un
acted premixed gas which then effectively acts as a w
co-flow. Occasionally, the edge of the flame front is seen
curl upward slightly. There is no evidence that either of the
characteristics has any appreciable effect on the dynami

III. THE PHENOMENOLOGICAL MODEL

The aim of this work is an understanding of ‘‘characte
istic’’ aspects of cellular patterns generated on circular
mains. In particular, we wish to explain why the cellul
states consist of rings of cells and to determine mechani
through which nonstationary states are generated. We w
also like an explanation of the weak~but nonzero! interaction
between distinct rings of cells. The underlying suggestion
that these features arise primarily from spontaneous sym
try breaking and the geometry rather than from the spec
physical mechanisms that govern the flame front.

The Kuramoto–Sivashinsky~KS!12 equation is the sim-
plest model of the thermodiffusive instability. It is derive
by making a series of simplifying approximations of diffu
sion equations for two variables~chemical species and hea!
coupled to fluid equations, and it captures qualitative featu
of cellular flames in extended domains.13,14 To preserve the
O(2) invariance of the system, the integration has to be c
ried out in polar coordinates. The difficulty of integrating th
KS equation in polar coordinates prevents us from usin
for our study.
No. 3, 1997
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466 Palacios et al.: Cellular pattern formation
The phenomenological model used is a modification
the ‘‘Brusselator’’~expanded about its uniform solution!.15 It
describes the evolution of two coupled, diffusive spatiote
poral fieldsu(x,t) andv(x,t) through

] tu5k1¹2u1~B21!u1A2v2hu32n1~¹u!2,
~3.1!

] tv5k2¹2v2Bu2A2v2hv32n2~¹v !2.

The parametersk1 andk2 are thediffusion coefficientsof the
two fields which are coupled linearly. The cubic terms co
trol the growth of the linearly unstable modes, while t
nonlinear gradient terms render the model nonvariatio
The form of the latter is similar to the nonlinear term of t
KS equation, where it appears as a consequence of the
vature of the flame front.13 The shape of the boundary of th
flame front~discussed in Section II! motivates the imposition
of Dirichlet boundary conditions on the fieldsu(x,t) and
v(x,t). We do not believe that the results of the numeri
studies discussed here depend on this choice.

In order to retain the rotational invariance of the syste
we carry out the numerical integration in polar coordina
(r ,f). The form of the Laplacian,¹25] rr 1r 21] r1r 22]ff

produces a~coordinate! singularity at the origin, which is
avoided by partitioning each diameter into an even num
of equally spaced lattice points. The numerical integration
carried out semi-implicitly through an Alternating Directio
Implicit ~ADI ! algorithm in (r ,f) coordinates16. Each non-
linear termN@u(x,t),v(x,t)# is expanded to linear order i
du5u(x,t1dt)2u(x,t) anddv5v(x,t1dt)2v(x,t), thus
linearizing the equations inu(x,t1dt) andv(x,t1dt). Each
step of the integration is carried out first along the diame
and then azimuthally, with a time stepdt ~50.05! small
enough to justify the truncation of the expansion of nonlin
terms. For several states it was checked that the results
unchanged with smaller time steps. The numerical algorit
fails in the case of the Kuramoto–Sivashinsky equation
to the existence of the term¹4u, which when expanded in
polar coordinates gives terms with cross derivatives suc
] rr uuu. In our numerical integrations, the ADI algorithm wa
seen to develop divergences at the origin when such te
are included.

Figures 1~b! and 4~b! show stationary states generat
through the integration of the model. These are similar to
experimental patterns shown in Figs. 1~a! and 4~a!. As
shown later, we are also able to reproduce several non
tionary states that are analogous to experimentally obse
patterns.

Although one would expect to obtain nonstationa
states by using any nonvariational model@such as replacing
the quadratic terms with6u(x,t)v(x,t)], we have only suc-
ceeded in doing so with the inclusion of the nonlinear gra
ent terms. This is particularly unfortunate, since the abse
of the gradient terms would have allowed the reduction
Eq. ~3.1! to a set of ordinary differential equations for th
dynamics of Fourier–Bessel coefficients. The presence o
nonlinear gradient terms result in the coupling of a lar
number of FB modes and prevents the reduction of Eq.~3.1!
to the set of ordinary differential equations. It is possible t
Chaos, Vol. 7,
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the mode mixing implied by the presence of gradient ter
and the Dirichlet boundary conditions plays a significant r
in generating the nonstationary states.

A. Linear stability analysis

A smooth fieldu(x,t) vanishing on the boundary of
circular domain of radiusR can be expanded in a Fourier
Bessel series as

u~x,t !5(
n,m

znm~ t !Cnm~r ,f!1c.c., ~3.2!

whereCnm(r ,f)5Jn(anmr /R)einf, (m>0 andn.0) and
c.c. denotes the complex conjugate.17 HereJn(r ) is thenth
order Bessel function of the first kind andanm is its mth
nontrivial zero.znm are complex coefficients, save forz0m

which are real. The orthonormality and completeness of
functions$Cnm : n>0, m>1% gives

znm5
1

pR2Jn11
2 ~anm!

E
0

2pE
0

R

ru~r ,f!C̄nm~r ,f!dfdr,

~3.3!

with the proviso that the coefficients are half of the val
given whenn50.

Thus the uniform state (u,v)5(0,0) is stable if all per-
turbations of the type (du,dv)Cnm decay. The marginal sta
bility corresponds to those parameters when~at least! one
such perturbation is marginal. Usin
¹2Cnm52(anm /R)2Cnm , and substituting in Eq.~3.1!
gives

]

]tS du~ t !

dv~ t !
D 5S m11 m12

m21 m22
D S du~ t !

dv~ t !
D , ~3.4!

where m115B212k1(anm /R)2, m125A2, m2152B and
m2252A22k2(anm /R)2.5 The uniform state destabilizes t
Cnm(r ,f) beyond the curve

Bnm
M 511

k1

k2
A21k1S anm

R D 2

1
A2

k2
S R

anm
D 2

. ~3.5!

For a given value ofA, it reaches a minimum of

B0511
k1

k2
A212AAk1

k2
~3.6!

at a radiusRnm5anm(k1k2 /A2)1/4. The results presented i
this paper are evaluated with fixed values ofk150.2,
k252.0 andA55.0. B andR are used as the control param
eters. The marginal stability curves of the trivial state
several Fourier–Bessel modes are shown in Fig. 3.

B. Nonlinear stability analysis

For parameters considered in the paper, it is found t
the bifurcations from the uniform state to the FB modes
subcritical. The following calculation for the instability t
C11 supports this observation. The presence of the quadr
~gradient! term implies that we need to expand the fiel
(u,v) as
No. 3, 1997
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467Palacios et al.: Cellular pattern formation
u~x,t !5u1C111u2C211c.c.,
~3.7!

v~x,t !5v1C111v2C211c.c.

This form for the fields will be substituted in Eq.~3.1! and
we will study its equilibrium by projecting onto the direc
tions C11 andC21. In order to complete the calculation w
write (¹u)25g1u2 ū1C111g2u1

2C21 . . . , and asimilar ex-
pression for (¹v)2.18 Substituting these in Eq.~3.1! and pro-
jecting gives up to quadratic order inu1 , u2 , v1 andv2 ,

m11u11m12v12n1g1u2 ū150,

m11u21m12v22n1g2u1
250,

~3.8!

m21u11m22v11n2g1v2 v̄ 150,

m21u21m22v21n2g2v1
250.

It follows that the state is created along the marginal stab
curve Bnm

M (R). Writing B5Bnm
M 1dB, Eq. ~3.1! can be re-

duced to give

dB5cuu1u2, ~3.9!

where the prefactorc is negative for parameters consider
in the paper. Thus small amplitude solutions to Eq. 3.1 e
when dB,0, and hence the bifurcations from the trivi
states are subcritical. Figure 7 shows the bifurcations to
modesC11 and C21 which were obtained through the nu
merical integration of Eq.~3.1!. A significant implication of
the subcriticality is that the~observable! bifurcating states
have finite amplitudes. Consequently, the nonlinear terms
crucial to determine the form of nontrivial states.

FIG. 3. Marginal stability curves along which the uniform sta
(u,v)5(0,0) of ~3.1! destabilizes to the Fourier–Bessel modesCnm . The
curves are evaluated for fixed values ofk150.2, k252.0 andA55.0. B and
the radius of the domainR are used as control parameters.
Chaos, Vol. 7,
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IV. ORDERED CELLULAR STATES

The discussion of the last section suggests that prim
bifurcations from the uniform state lead to modes that
proportional to the Fourier–Bessel functions. This appear
be the case in some of the single ring flame patterns. M
tiple ring Fourier–Bessel modes have also been observe
patterns from the Faraday experiments.19,20In this section we
suggest, through examples, possible reasons for the
spicuous absence of the multiple ringed FB states~such as
C63) in the flame patterns.

The presence of the nonlinear gradient terms and
imposition of Dirichlet boundary conditions imply that pur
FB modes cannot be solutions of the phenomenolog
model ~3.1! because all terms except the gradients vanish
the boundary of the domain. Consequently, solutions to
model equations will have to be combinations of FB mod
whose gradient vanishes at the boundary. The existenc
cellular states can be traced to the proximity of certain ro
of the FB functions, as we demonstrate through examp
The three ring cellular state shown in Fig. 4~a! can be ap-
proximated by a combination of the modesC12,1, C63, and
C06. Observe the proximity ofa12,1, a63, and a06 allow
these modes to be simultaneously excited. The subcritica
of the primary bifurcations, which imply the finiteness of th
amplitudes, coupled with the necessity for the gradients
the fields to vanish at the boundary, make it imperative t
such a combination of modes be excited.

As a second example we give the modal decomposi
of the two-ring pattern with rings of three~3! and eight~8!
cells, see Fig. 1. The two rings have distinct symmetries,
hence can be separated as follows. Fourier–Bessel deco
sition of the state shows that the largest amplitudes co
spond to modes withCnm with m50,3,6,8,9, and 16. Com
bining the modes withm53,6,9 gives the inner ring of cells
while the sum of modes withm58,16 provide the outer ring
Figure 5 shows the results of the decomposition, and lead
an interesting observation. The intensity of each combina
of modes is small outside of the corresponding ring. T
feature may explain why the rings of cells are weak
coupled to each other in the nonstationary states.

V. NONSTATIONARY STATES: ROTATING RINGS OF
CELLS

The utility of modal decomposition for the study of non
stationary states can be demonstrated through the analys
a rotating ring of cells. Evidence for the existence of ad
tional nonstationary states, predicted by the normal fo
theory, is given. It is known from experimental studies
one-dimensional systems that cellular patterns on interfa
drift when the cells are not invariant under reflections.21 The-
oretical analyses show how the asymmetry, which res
from the coupling of modes with a wave-vector ratio 1:
leads to drift modes.9,10,22 These results have not bee
checked in geometries beyond~essentially! one-dimensional
systems.

Figure 6 shows three pairs of patterns from the fla
front. The stationary patterns in Figs. 6~a!, 6~c! and 6~e! have
No. 3, 1997
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468 Palacios et al.: Cellular pattern formation
the same number of cells in each ring as their rotating co
terparts shown in Figs. 6~b!, 6~d! and 6~f!, respectively. The
rings shown in Figs. 6~b! and 6~d! are both rotating in a
clockwise direction. In Fig. 6~f! the outer ring is fixed and
the inner ring rotates in a counter-clockwise direction. T
rotation of a ring at given control parameters can be eit
clockwise or counter-clockwise depending on the initial co
ditions. The crucial observations are that the cells in e
rotating ring have lost their chiral symmetry,7 and that the
direction of rotation depends on the sense of the asymme
Fourier–Bessel decomposition of these states demonst
that the asymmetry is produced by the phase differenc
the modes. The blurring created by the rotation does
contribute to the observed asymmetry of the cells. Th
observations reinforce the relationship between the geom
~chiral asymmetry! of cells and the dynamics~rotation! of
rings of cells.

We choose to study a single cell, the analysis of wh
captures many essential features of the rotating cellular

FIG. 4. Stationary cellular patterns generated in the~a! experiment and~b!
the model, which have similar characteristics. In Section IV, we sugge
mechanism by which such cellular states~as opposed to pure Fourier
Bessel modes! can be formed.
Chaos, Vol. 7,
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terns. Figure 7 shows the parameter space in the neigh
hood of the mode coupling betweenC11 andC21. The pri-
mary bifurcations to each pure mode are subcritical,
expected from the analysis of Section III. The shaded reg
to the left of the stability domain ofC21 contains severa
distinct nonstationary states. The first bifurcation~on moving
right! occurs along the left edge of the shaded domain
leads to a single uniformly rotating cell, which undergoes
Hopf bifurcation to a state whose angular velocity~as well as
shape! is periodic. The final bifurcation, which occurs clos
to the right edge of the shaded region leads to a heteroc
cycle between a pair of two-cell states which are at rig
angles to each other.

Rotating states of a single cell obtained from the nume
cal integration of Eq.~3.1! are presented in Fig. 8 along wit
the analogous experimental states. The chiral asymmetr
demonstrated by contrasting Fig. 8~a! with Fig. 8~b! and also
Fig. 8~c! with Fig. 8~d!. The computed and experimental ce
shapes are similar as seen by comparing Fig. 8~a! and Fig.

a

FIG. 5. The~a! inner and~b! outer ring of the state shown in Fig. 1~b!. The
rings are separated via a FB expansion as described in the text. Observ
the intensity of the field outside of the rings is small. This may explain w
the interaction between rings is small in nonstationary patterns, such a
ratcheting states.
No. 3, 1997
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469Palacios et al.: Cellular pattern formation
8~c!, and also Fig. 8~b! and Fig. 8~d!. The Fourier–Besse
expansion of the rotating cell confirms that the modes w
largest amplitude areC01, C11 and C21. The real coeffi-
cientsz0m are constants of the motion. The amplitude a
phase of the coefficientsz11 andz21, shown in Fig. 9, indi-
cate that the state undergoes uniform rotation.

The presence of the nonlinear gradient term and the v
ishing of the field at the boundary require the existence
secondary FB modes that are ‘‘slaved’’ to these prim
modes. The behavior of their coefficients is similar to that
the corresponding primary mode. Thus, for the state sho
in Fig. 8~a! the amplitude of coefficientsz12, z13, etc., will
be constant, and their phase will have the same slope as
of z11.

In addition to the uniformly rotating states, the norm
form analysis predicts the existence of nonuniformly rotat
states, as well as a heteroclinic cycle.9,10 We observe these
states close to the right edge of the shaded region of Fig
the very edge of which exhibits the heteroclinic cycle. Figu
10~a! exhibits the evolution of the amplitude and phase ofz11

and z21 for a nonuniformly rotating cell. The periodicity o
both the cell shape and angular speed@shown in Fig. 10~b!#
suggests that the bifurcation to nonuniform rotation occ

FIG. 6. Six cellular patterns generated on a circular flame front:~a! and~c!
show stationary rings of two and six cells, respectively;~b! shows a ring of
two cells, while~d! shows a ring of six cells, both rotating clockwise;~e!
and~f! are states with a fixed outer ring and an inner ring of two cells. T
cells in the inner ring of~e! are stationary, while those of~f! rotate counter-
clockwise. Observe that cells belonging to the stationary rings are chi
symmetric, while those of the rotating rings are not.
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via a Hopf bifurcation, confirming the predictions of the no
mal form theory. The heteroclinic cycles observed at
rightmost edge of the shaded parameter domain are show
Fig. 11~a!. Figure 11~b! shows the behavior of the phases
the FB coefficients.

To the best of our knowledge our experimental and n
merical states are the first observations of cellular par
broken modes beyond those on one-dimensional interfac23

e

ly

FIG. 7. Parameter space in the neighborhood of the mode-coupling bet
C11 and C21 . Observe that the primary bifurcation to each pure mode
subcritical. The shaded region to the left of the stability domain ofC21

contains several distinct nonstationary states. The first bifurcation~on mov-
ing right! leads to a single uniformly rotating cell, which experiences a Ho
bifurcation to a state whose angular velocity~as well as the shape! is peri-
odic. The final bifurcation occurs close to the right end of the shaded reg
and leads to a heteroclinic cycle between a pair of two-cell states relate
symmetry.

FIG. 8. ~a! Clockwise and~b! counter-clockwise rotating states of a sing
cell from the model, and the analogous states~c! and~d! of the experiment.
Observe the qualitative similarity of the cell shape in the two cases.
parameters generating the rotating state areh52.0, n150.5, n251.0,
B56.80 andR51.35.
No. 3, 1997
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470 Palacios et al.: Cellular pattern formation
Furthermore observations of the nonuniform rotations a
heteroclinic cycles resulting from thek22k mode coupling
have not been reported before.

VI. MODAL DECOMPOSITION OF EXPERIMENTAL
DATA

For nonstationary patterns, we demonstrate the feas
ity of using the Karhunen–Loe´ve ~KL ! decomposition to ob-
tain the modes relevant to the dynamics. Karhunen–Lo´ve
decomposition provides an expansion of a given smooth

FIG. 9. The evolution of the~a! amplitudesuz11u and uz21u of the primary
Fourier–Bessel coefficients, and~b! the corresponding phases, of the cell
lar state shown in Fig. 8 reveal that it is pure drift mode. The ‘‘pha
asymmetry’’ (2u12u2) is constant.
Chaos, Vol. 7,
d

il-

a-

tiotemporal fieldu(x,t), in terms of a time-independent or
thogonal basis$f i(x)% and time dependent amplitude
$ai(t)%, such that the reconstruction

u~x,t !5S iai~ t !f i~x! ~6.1!

has a smaller mean-square truncation error than in any o
basis.24–26 The functions $f i(x)%, determined from the
‘‘data’’ u(x,t), are the eigenfunctions of a correlation m
trix. The associated eigenvaluesl i satisfy

^aj~ t !ak~ t !&5l jd jk , ~6.2!

FIG. 10. ~a! The evolution of the~a! amplitudesuz11u and uz21u of the pri-
mary Fourier–Bessel coefficients, and~b! the corresponding phases, of th
nonuniformly rotating cell. The ‘‘phase asymmetry’’ (2u12u2) is a peri-
odic function. The parameters that give this state are the same as F
except forR51.37.
No. 3, 1997
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471Palacios et al.: Cellular pattern formation
where^ • & denotes the time-average operator.l j represents
the variance of the signalu(x,t) in the direction of thej th
eigenfunction. Alternatively, ifu(x,t) is considered as a ve
locity field, then eachl j represents the average ‘‘kinetic e
ergy’’ in the j th mode andSl j can be considered to be th
total ‘‘energy’’ of the data or signal. If the total energy co
tained in a given truncation of the KL expansion is close
that of the original signal, then the truncated expansion p
vides a good approximation of the original spatiotempo
‘‘data.’’

The KL modes are estimated from the given spatiote
poral fields; consequently their analytical form, and symm
tries are unknown. This precludes us from deducing the n
mal form equations for the amplitudes of KL mode
Furthermore, the saturation of the intensities of experime
data@see Fig. 1~b!# will result in a proliferation of unphysica
KL modes, which can destroy symmetries of the KL mod
We have thus far not succeeded in developing a system
way to eliminate these problems completely. However,
observation that the combustion front almost vanishes at
boundary suggests that the largest Fourier–Bessel co
cients of a given KL mode may provide information about
symmetries. As shown below, we can identify~with suffi-
cient confidence! the symmetries of the coupled mode

FIG. 11. ~a! The two saddle points of a heteroclinic cycle;~b! shows the
evolution of the phases of the Fourier–Bessel coefficientsz11 andz21 . The
parameters that give this state are the same as Figure 8 except forR51.4.
Chaos, Vol. 7,
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which is the only information needed to deduce the norm
form equations.

Figure 12~b! shows the five leading modes from the K
decomposition of the nonuniformly rotating single-cell sta
several snapshots of which are shown in Fig. 12~a!. These
modes capture over 99% of the energy, and give the re
duction shown in Fig. 12~c!. The first KL mode, which con-
tains the largest energy, is the time average of the data;
O(2) symmetric.27 The next two modes~which can be con-
sidered to be the real and imaginary parts of a complex m
analogous toC11 of the Fourier–Bessel expansion! are ~ap-
proximately! D1 invariant. These pairs of KL modes ar
combinations of several FB modes of the typeC1m . The
largest contributions to these come fromC11, C12 andC13.
The phases of these modes are slightly different, leadin
the small asymmetry observed in the KL modes. The sec
pair of modes are approximatelyD2 symmetric, and their
expansion consists ofC2m’s. Ignoring their asymmetry~or
taking their largest component in the FB expansion!, one can
thus deduce the modal decomposition of the rotating sta
and the appropriate normal form theory.

Figure 13~a! shows several snapshots of an experimen
state with a single rotating cell. Figure 13~b! shows the KL
modes with the largest energies, and Fig. 13~c! gives the
reconstruction using the first 5 modes. The distinctive asy
metry of the KL modes is due to the phase difference
tween the differentznm’s for a fixed n. Analysis of artifi-
cially saturated data from the model indicates that the cu
of experimental data@Fig. 1~b!#, and the form of boundary
conditions play a role in this asymmetry. The behavior of t
amplitudes of the KL modes~Fig. 14~a!! can be used to
deduce that the rotation is nonuniform. Figure 15 provid
the results of the analysis of a rotating state with two ce
and the rotation in this case is seen to be much close
being uniform~Fig. 14~b!!.

Finally, Fig. 16 shows the results from the KL analys
of a cycle between two distinct states. The phase of
~complex! coefficients of the KL modes~Fig. 17! can be
used to deduce that the motion corresponds to a heteroc
cycle.

VII. DISCUSSION

We have used a phenomenological model and bifur
tion theory to understand certain aspects of cellular patte
on a flame front. The work is complementary to a detai
numerical study of simplified models of a flame front, e.
the Kuramoto–Sivashinsky equation. Our work aims to d
termine the general features such as the existence of ring
cells and the relationships between distinct patterns obse
in the experiments. It was shown through several examp
that certain features of both stationary and dynamic patte
can be deduced using the appropriate theories of mo
coupling.

The essential first step in the analysis is the identificat
of the modes whose coupling leads to interesting patte
We have shown how states consisting of rings of cells can
established. Furthermore, we are able to deduce~observable!
No. 3, 1997
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472 Palacios et al.: Cellular pattern formation
FIG. 12. The Karhunen–Loe´ve analysis of a single nonuniformly rotatin
cell generated in the model~3.1!: ~a! shows several snapshots of the sta
demonstrating the shape changes of the cell. The five largest KL mode
shown in~b!. The first is the mean value of the field. The next two pairs
KL modes are analogous to the real and imaginary parts of the FB func
C11 and C21 ~the former is well approximated by a linear combination
C11 , C12 andC13 , while the latter is approximated by a linear combinati
of C21 , C22 , C23 andC24). The reproduction using these five KL mode
is given in ~c!.

FIG. 13. The Karhunen–Loe´ve decomposition of a single nonuniforml
rotating cell from the experiment. The layout is similar to that of Fig. 1
The distinctive asymmetry of the KL modes is due to the phase differe
between the FB coefficients. This is in part due to the saturation of
experimental data.
Chaos, Vol. 7,
properties of nonstationary states. In Sections IV–VI and
Appendix, we have presented aspects of this analysis. P
erties of cellular flame patterns appear to be intimately
lated to the orthonormal expansion appropriate to a circu
domain, i.e., the Fourier–Bessel expansion.17,28 However,
the patterns observed are not pure FB modes, but rather
combinations. The subcriticality of the primary bifurcation
and the presence of the gradient terms in the model exp

,
are

ns

.
e
e

FIG. 14. The evolution of the amplitude of primary KL mode for~a! rotat-
ing single cell state shown in Fig. 13, clearly showing the periodic modu
tions, and hence that the rotation is nonuniform. In contrast~b!, which
shows the amplitude of a primary KL mode of the rotating two-cell st
shown in Fig. 15, indicates that the rotation is uniform.
No. 3, 1997
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473Palacios et al.: Cellular pattern formation
FIG. 15. The Karhunen–Loe´ve decomposition of a rotating state with tw
cells. The layout is similar to that of Figs. 12 and 13. A good approximat
of these KL modes require about a dozen FB modes.

FIG. 16. ~a! Snapshots from a heteroclinic cycle moving between t
saddle points,~b! the principal modes of the KL decomposition and~c! the
reconstruction from these modes.
Chaos, Vol. 7,
why this can be the case. The Bessel functions of those
modes that combine to produce cellular patterns have z
in close proximity. In states with multiple rings of cells wit
different symmetries~e.g., Fig. 1!, several FB functions con
tribute to the cells in each ring. The observed weak coupl
between distinct rings~as is observed in ratcheting state4

where the inner ring rotates intermittently without affectin
the outer ring significantly! is also explained through th
proximity of roots of the Bessel functions. What is clear
that the explanation of the origin of these features does
lie in a microscopic theory of the flame front.

The introduction of a~numerically! integrable phenom-
enological model allows a comprehensive analysis of m
stationary and nonstationary states, including a study of
effects of noise and those of boundary conditions. Stabi
domains of distinct states can be obtained with greater a
racy; in particular, we have been able to locate nonunifo
rotating states and the heteroclinic cycles predicted by
normal form theory. The ability to analyze experimental p
terns through Karhunen–Loe´ve analysis complements thes
results. To the best of our knowledge, nonuniform rotat
states and heteroclinic cycles of the type discussed have
been shown to be present in experiments before. In fu
work, the KL decomposition will be used to derive low
dimensional approximations to the KS equation.29

We conclude with a brief demonstration of the adva
tages provided by a modal analysis in the study of m
complex nonstationary states. Figures 18~a! and 18~b! show
snapshots from the ‘‘hopping state,’’ where three cells in
single ring rotate with nonuniform angular speed. The d
namics and the evolution of cell shapes appears to be q
complex and distinct for each cell; the trailing cell chang
its shape more than the other two.2 Fourier–Bessel decom

n
FIG. 17. The phase of the KL modes for the heteroclinic cycle show
motion between two saddle points.
No. 3, 1997
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474 Palacios et al.: Cellular pattern formation
position of the numerically generated state unravels mos
the complexity of the dynamics and reveals that the prim
modes excited,C12, C31 and C41, undergo periodic mo-
tion. Not surprisingly, the zerosa12, a31 anda41 are close to
each other and thus the modes can be simultaneo
excited.

In order to develop the normal form analysis we need
deduce a representation of the invariances in terms of
coefficientsz12, z31 and z41 of the Fourier–Bessel series
Rotations are represented by (z12,z31,z41)
→(z12e

iu,z31e
3iu,z41e

4iu) while reflections are represente
by (z12,z31,z41)→( z̄12, z̄31, z̄41). Observe that the norma
form depends only on the azimuthal index of the Fourie
Bessel functions, while the ‘‘radial’’ partJnm(anmr /R) de-
termines the modesCnm that can be excited simultaneousl
Unlike the rotating states studied in Section V, the coupl
of modes leading to hopping states would not be expecte
one dimensional problems. The analysis of the normal fo
will be presented elsewhere.29
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FIG. 18. Hopping modes seen in the~a! experiment and~b! the model~3.1!.
Observe that the cell shapes and angular velocities appear to change
complicated way. However a Fourier–Bessel decomposition of these s
unravels this complexity, and provides the modes essential to study
dynamics.
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APPENDIX: NORMAL FORM ANALYSIS

A brief description of the normal form analysis corr
sponding to thek22k mode coupling will be provided in the
Appendix.5,9,10 The primary bifurcations for our model~as
well as for the experimental system! are subcritical, see Fig
7. Consequently, earlier analyses of the mode coupl
though providing an insight to the possible bifurcation se
are not strictly applicable here. However, the nonstation
states observed in the model~i.e., uniform rotation, nonuni-
form rotation, and heteroclinic cycles! suggest that the bifur-
cation sets are similar in the two cases. We present the m
coupling theory for the case when the primary bifurcatio
~to C11 and C21) are degenerate.5 Unfolding of the degen-
eracy ~leading either to subcritical or supercritical trans
tions! will preserve the bifurcation diagram. The analysis
the degenerate case will thus not only explain our results,
will also suggest why the observed states are similar in
two cases.

The normal form equations are equivariant under ro
tions by an arbitrary angleu and reflections. Using the FB
coefficients, these operations are represented
(z11,z21)→(z11e

iu,z21e
2iu) and (z11,z21)→( z̄11, z̄21) re-

spectively. Equations that are equivariant under the op
tions take the form30

n a
tes
he

FIG. 19. The bifurcation set for Eq.~A2!. The trivial state (u,v)5(0,0) is
stable form1,0 andm2,0. Along the linem250 the uniform state under-
goes a bifurcation toC21 which is chosen to be degenerate. The bifurcati
acrossm150 leads to a mixed mode which remains supercritical. T
MTW and HC show bifurcations to traveling modes, modulated travel
modes, and heteroclinic cycles respectively. The parameterse11521,
e12522, e21521, e2250 ande23521 are fixed.
No. 3, 1997



th

e

r
th

te
r-

ci.

ev

pl.

d.

d

Eu-
r,
,

t,

l, see

e-

d

als
t.

475Palacios et al.: Cellular pattern formation
ż115P1~ I 1 ,I 2 ,I 3!z111Q1~ I 1 ,I 2 ,I 3!z21z̄11,
~A1!

ż215P2~ I 1 ,I 2 ,I 3!z111Q2~ I 1 ,I 2 ,I 3!z11
2 ,

with I 15uz11u2, I 25uz21u2, and I 35z21z̄11
2 1 z̄21z11

2 . Using
the lowest order required to provide the degeneracy of
primary bifurcations give

ż115 z̄11z211z11~m11e11uz11u21e12uz21u2!,
~A2!

ż2152 z̄11
2 1z21~m21e21uz11u21e22uz21u21e23uz21u4!.

The uniform state (z11,z21)5(0,0) is stable form1,0 and
m2,0. Acrossm250, there is a bifurcation topure modes
(C21(r ,u) in our case! which lie on the invariant subspac
z1150. For this bifurcation to be degeneratee22 has to be
chosen to be 0. Figure 19 shows the bifurcation set fo
particular choice of the remaining parameters, showing
existence of~1! the bifurcations to rotating states,~2! the
secondary Hopf bifurcations to modulated rotating sta
and ~3! bifurcations to the heteroclinic cycles. These bifu
cations were also observed in the model, see Fig. 7.
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