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Overview

Turing patterns in Nature

Papilio dardanus
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Turing patterns come to life
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Overview

Photographs of the juvenile of P. Semicirculatus
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Overview

Tumor

Growing
Limbus tumor

& Days 8 Days 12 Days

Tumor growth and vascularisation steps. The arteries (red network) bring
Oxygen and nutrients to the tumor
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Overview

Complex Networks
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Turing Instability
PDE Approach Combustion
Analysis

Alan Turing (1952)

2
thl = f(u,v) + D“gxg »
ov 0?v
= g(u,v) + Dy

where u = u(x, t), v = v(x,t), x represents space and ¢ is time.

Novelty: Stable system + “Stabilizing” diffusion = Instability

A.M. Turing. The Chemical Basis of Morphogenesis.
Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences. Vol. 237, no. 641. (Aug. 14,
1952), pp. 37-72.
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Turing Instability
PDE Approach Combustion

Analysis

#  Turing Patterns /7N
RICXS l"ll
» Turing proposal for : : : J

“morphogenesis” (1952)
» “selective diffusion” in reactions
with feedback

» requires diffusivity of feedback ))))’"‘((t

species to be reduced compared to
other reactants

A. Hunding, 2000

M

 recently observed in experiments

» not clear that this underlies S Ree—

embryo development

Castets ef al. Phys Rev. Lett 1990

Fall 2017 M635 Pattern Formation



Turing Instability
PDE Approach Combustion

Analysis

Ouyang and Swinney
Chaos 1991

CDIMA reaction
Turing Patterns

spots and stripes:
depending on
Experimental
Conditions
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Turing Instability
PDE Approach Combustion

Analysis

Model reaction kinetics

= Gierer-Meinhardt (1972) —  Activator-Inhibitor

%‘VZM"“}’ a—bu+”7,],

v(l+ku’)

3" =dVv+y (u: - v)
= Thomas (1975) — Substrate-Inhibition

@-VELH}' [a —u—hu,v) ).
L =d Vv+y ((;r(b—v)— fr(u,v)l with fr(u,v)-LV,
a l+u+Ku’

= Schnakenberg (1979) — Chemically derived
Bu =Viu+y (a u+u v),

E-d72v+y (b—uzv)

Fall 2017 M635 Pattern Formation



Turing Instability
PDE Approach Combustion

Analysis

Robustness of solutions

= Turing patterns only develop in particular points of
the parameter space (Turing space), tight control of
the parameters is required for pattern formation

= Pattern selection, especially when multiple unstable
modes exist, is strongly dependent on the initial
conditions (Acuri and Murray, 1986)

= Domain growth enhances robustness in pattern
selection and transition!
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Turing Instability
PDE Approach Combustion

Analysis

RDEs on growing domains

Consider the model equations: (Grampin, er. af. 2002; Madzvamuse, et, af, 2003,2005, 2005)

du 2 2
oy +V.(@u)=D, V-u+F(u,v)
%+V.(a v)=D, V2v+G(u,v), in Q1)

Boundary conditions:

Boundary conditions can be of Dirichlet type (u and/or v
given on the boundary) or of (homogeneous) Neumann
type which describe zero-flux of u (or v) out of the boundary.

Initial conditions:
Initial conditions are taken as small perturbations around the
homogeneous steady state if it exits.
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Turing Instability
PDE Approach Combustion

Analysis

Nymphalid ground plan

(Schwanwitsch, 1924; Suffert, 1927; Nijhout,1991)

= Complicated patterns can be understood as a
composite of relatively small number of element
patterns
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Turing Instability
PDE Approach Combustion

Analysis

Homozygous
forms of
Papilio dardanus

meriones antinorii

hnlhnmus

planemoides

hippocoon

poultoni ochracea

lambomni

natalica
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Turing Instability
PDE Approach Combustion

Analysis

Numerical simulations of the colour patterns of Papilio dardanus

Trophonius G Planemoides Hippoccoonides

Natalica Niobe Leighi Salaami
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Turing Instability
PDE Approach Combustion

Analysis

Exact patterning of the butterfly

Papilio Dardanus is compared
with the results of numerical
computation of a reaction-

Meinhardt model Qr )

diffusion system-the Gierer-

Trophonius

Cenea

-

Planemoides Hippoccoonides
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Turing Instability
PDE Approach Combustion
Analysis

Linear Stability

gt 0 , rewritenas Ot
87‘1{ =g(u,v) + DVW’ where w = (u, V).

Let wo = (Up, Vo) be a homogeneous sol. and let w = wg + dw, where

ow =" " cedle .
J
Substituting into linearized system about wo = (up, W) Yields:

(J — DK? — \j)w =0, 2)
where k? = k; - kj and

o < Ouf O f >
Oug Vg / (4y,)
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Turing Instability
PDE Approach Combustion
Analysis

Dispersion relation
Solving Eq. (2) yields:

)‘2+((Du+Dv)k2—fu_gv)>\+Duka4—kz(vau+Dugv)+fugv— v9u =0

Pattern Selection Mechanism:
A(k) predicts the growing wave modes: We/k e k)t

Wave numbers k with Re{A(k)} > 0 grow exponentially until the
nonlinearities in the reaction kinetics bound this growth.
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Turing Instability
PDE Approach Combustion
Analysis

Critical Wave Number: Solve A(k¢) = 0 for K¢

A
Wavenumbers of
Re{}‘(k)} the unstable modes
K, Nk
where
k2 . vau ‘I‘ Dugv
¢ 2D,D,
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Turing Instability
PDE Approach Combustion

Analysis

\, ~*— Mirror

LN
N
A o - — Viewing
p | Port
; :@“w -a— Exhaust Port
"% =" |
Came}a ‘ I Pyrex Shell

(Heat Sink)

Ignitor

Pressure
| A Transducer

" Bumner
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Turing Instability
PDE Approach Combustion

Analysis

“Turing Patterns” in flames

“thermodiffusive
instability”

- first observed in Leeds

(Smithells & Ingle 1892)

requires thermal diffusivity
< mass diffusivity
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Turing Instability
PDE Approach Combustion
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Turing Instability
PDE Approach Combustion
Analysis

Kuramoto-Shivashinky Model
ou

= = U (1 4+ V2)2u — n(Vu)? — mat,

where

u = u(x, t) = perturbation of a planar front with strength ¢,

11 = parameter associated with growth in the direction normal
to the circular domain (burner),

nou° is added to stabilize the numerical integration.
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PDE Approach Combustion
Analysis
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Turing Instability
PDE Approach Combustion
Analysis

Hopping Patterns
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Turing Instability
PDE Approach Combustion
Analysis

Analysis: Proper Orthogonal Decomposition (POD)

Given a data set {u(x, t)} the POD extracts orthogonal basis
{ak(t), ®x(x)} such that the reconstruction

M
Uzpprox (X, t) = U+ Z ak(t) ®x(x),
k=1

is optimal in the sense that the average least squares
truncation error

en = ([lu((X, t;) — Uapprox(X, t)][,)

where U is the time-average of the data set u(x, t).
Note: POD is also known as Principal Component Analysis.
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Turing Instability
PDE Approach Combustion
Analysis

3-Cell Hopping Pattern

s e &
QDOHDS .

40

180 20

@ ‘A‘ .v} (40 C

A. Palacios, P. Blomgren and S. Gasner. Bifurcation analysis of
hopping behavior in cellular pattern-forming systems. Int. J. Bif.
and Chaos, 17, no. 2, (2007) 509-520.

Fall 2017 M635 Pattern Formation



Turing Instability
PDE Approach Combustion
Analysis

u(x, t) = U+ z(t)Wa1(X) + z5() W31 (X) + Z4(t) Va1 (X) + c.C.

where U is the time-average of the data set u(x, t).

o] P o] o]
Time Average 1 0.04 2 0.04 3 00> 0.04 5
o 0
- . 0.02 "‘ 0.02 0.02
S - 0 --0.02
“w LY
-0.02 -0.02 -0.02 0.04
2 E-=0213 J004E-0213 J004E=019 | E-0148 [J-0.04 E-0048
o] o] o] o] ]
[ 0.04 7 0.04 8 0.05 9 0.05 10 0.05

“ 0.02 2-02 " \ Q'. \ .0'.
b’ -0. 02“' —o.oz.. 0'. Yo .' .'0 .: j

E=0039 | goq E=0.039 [J.004 E=0017 J-005 E=0.017 J-005E=-0.016 [§-0.05
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Turing Instability
PDE Approach Combustion
Analysis

ldealization: '-Equivariant System of ODEs

az
dt

= f(z, ),

where I' = O(2) represents the circular symmetry of the burner,
z=(2,23,24) € c3, and 1 € R3 are vectors of parameters.

Assume:
@ z = 0 to be “trivial solution” (planar front): f(0, 1) = 0.
@ Bifurcation occurs at = (0,0, 0), so that V = ker(Df) +# 0.
@ L = (Df)o,0,0,0) has three zero eigenvalues.
o V=V,o Vza V4, where Vi = span{Re{Wy1}, Im{V1}}.
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Turing Instability
PDE Approach Combustion
Analysis

Symmetry-Breaking Bifurcations

Under these assumptions, at © = (0,0, 0), the z = 0 uniform
solution loses stability and three O(2) symmetry-breaking
branches of steady-states modes interact with each other. The
action of I on C3 is generated by:

Group Action
0-(20,23,24) = (€¥2,6%23,€%2,), 6 e SO(2),
K - (22,23,24) = (22,23,24), K = ﬂlp
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Turing Instability
PDE Approach Combustion
Analysis

Invariant Theory

Painful derivations . .. yield the amplitude equations (ODEs)

Z = 2Zoz4 + OCQZ§Z4 T Zg(uz T 622|22|2 aF 623|23|2 T 624|Z4|2)
Z3 = 3202324 + Z3(us + €32|22|% + e33]Z3]2 + €34|24/?)
Z4 = :|:222 o a4Z§ZQ o Z4(/14 T e42|22|2 aF e43|23|2 I e44|z4|2),

where a», oz, and a4 are real-valued constants.
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Group Theory
Steady-State Bifurcation with D4-Symmetry

Symmetry Approach Lattice Patterns

Abstract Groups

A group I is a set {v1,72, ...} that satisfies:

@ Closure: y xI'— T oryive=v €l

@ Associativity: (7172)73 = 71(7273)

@ |dentity: dJee Tl st. ye=ey=17

@ Inverses: Iy T elst. vy 1=y Ty=e.

Examples:
@ Zy={0,1,...,N—1}
@ S'=Circle Group={z€C:|z| =1}
@ GL(n): General linear group of real invertible n x n matrices.
@ O(n): Set of n x n orthogonal matrices, AT = A~".
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Table 3.1. A group table

e 14 ¥2 v Va
¢ e Y Y2 s ¥
1% ¥ ¥i 1y = ¥1¥n
»2 »2 ¥2¥1 Vi - ¥2¥n
: & i i N i
¥n ¥n ¥n¥l ¥n k2 o ¥
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Table 3.2. The group table for Ds, the symmetry group of an
equilateral triangle

e P o m mp mp?
e e P o* m mp mp?
P P IS e mp? m mp
p? p* e 3 mp mp? m
m m mp mp® e P re
mp mp mp?* m p? e P
mp? mp? m mp P ? ¢

Fig. 3.1. The elements of D,
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Group Theory

Steady-State Bifurcation with D,-Symmetry
Symmetry Approach Lattice Patterns

Subgroups

A subgroup H C T is a subset that forms a group under the
same group operation.

Example:
@ ZycDy or DycCO(n)
@ Letl = D3. Then H =2Zy(x) = {e,m} C Dg.

Normal Subgroups

H is a normal subgroup of T if

vy ' eH, VYyel, VheH.

Fall 2017 M635 Pattern Formation



Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Representations of Groups
A representation of a finite group or compact Lie group, over a
field, F, is a homomorphism p : I — GL(n, F), i.e., p(7) = M,.

The degree or dimension of the representation is n.

Example 3.21 The group Da has the representation
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

I-Invariant Subspaces

A subspace W c Vis l-invariant if (y)w € W, Vy € I and Yw € W.
e.g.) W= {0} and W = V are always l-invariant.

Irreducible Representations

A representation or action of I is irreducible if the only I'-invariant
subspaces are {0} and V.

e.g.) Trivial representation: p.(x) = x.

e.g.) I =S'actingon C: pk . z = ekf 2.

Absolutely Irreducible Representations

An action or representation of I is said to be absolutely irreducible if
the only linear mappings that commute with the action of I' on V are
scalar multiples of the identity.

e.g.) All 1D representations are abs. irrep, as is the natural rep. of Ds.
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Example 3.26 In the standard action of SO(2) on B2, a rotation through an
angle, 8, is represented by the rotation matrix

P (cosﬁ' —smﬁ') (3.90)

sinf  cosf
. . . e 2 .
The only SO(2)-invariant subspaces are the origin and the whole of B=, so this
action is irreducible. However, it is not absolutely irreducible since each matrix

Ry commutes with every other rotation matrix Ry € SO(2):

RoRy = RyRy = Rgy. (3.91)
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Theorem 3.1 (Orthogonality theorem for matrix representations) Ler the sets
of matrices MY and ,M;f belong to twe unitary representations of a finite group T,

where p and g label the representations, so that the representations are identical {‘M}'I JI |
if p = q and inequivalent if p # q. Then (M)
My,
1 = 1 E
i Z{;(E11;3:j‘[.-»f;f;\, = ana”ak,. (3.102) My =1 (My;)n
ye
where np is the dimension of M. (;L._f}( 11
3 md L

Example 3.27 Let us consider the natural and identity representations of Ds. Both
these representations are real, so there is no need to take the complex conjugate of
a vector when forming the dot product. Taking the natural representation first, the

vectors M(T);; are given by

0
‘/13

(Mp)y, = S (MP)y, =

1
1

(M), = (MD), = G.104)

where the superscript n denotes the natural representation, and the rows of the
vectors range over the group elements in the order {e. p., p2, m.mp, mp®). Any
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Steady-State Bifurcation with D,-Symmetry
Symmetry Approach Lattice Patterns

The character £(M) of an n x n matrix M is its trace:

§M) =" M.
i=1

Example 3.28 The characters of the natural representation of D3 are
xe=2 xp==1 s2==1 ¥m =0, jmp =0, }pp2=0. (3.109)

The identity has character 2 as this is a two-dimensional irvep. All elements in the
. 2 - .

conjugacy class {m, mp, mp~} have character 0, while the two conjugate elements

p and p? have character —1.
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Theorem 3.2 The number of inequivalent irreducible representations of a finite
group I is equal to the number of conjugacy classes of T

This means that character tables are always square as shown in Table 3.3.
Theorem 3.3 The sum of the squares of the dimensions d; of the n inequivalent
irreducible representations of a finite group T, is equal to the order, |T'|, of T

n

Y d2=1r]. (3.112)

i=1
The proofs of Theorems 3.2 and 3.3 can be found in Cornwell (1984).
Theorem 3.4 (Orthogonality theorems for characters) For a finite group, T,
the characters satisfy

n
> XPESAT(CS )N = IT13yy, (3.113)
p=1
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Example 3.29 D; has three conjugacy classes, so by Theorem 3.2 it must have
three inequivalent irreps. By Theorem 3.3 the sum of the squares of the dimensions
of the irreps must equal the order of the group, which is 6. That means that it must
have two one-dimensional irreps and one two-dimensional irrep, since 12 + 1% +
22 = 6, and there is no other way to add three square numbers to get 6. We already
know about two of the irreps: the identity and natural representations, so we just
need to find one more one-dimensional irrep, which turns out to be

M} =M= M:E =1, Mj=M; =M ,=—1, (3.115)

mp®

where a labels the irrep. In this irrep rotations and the identity are represented by
~+1 and reflections by —1, values equal to the determinant of the corresponding
matrix in the natural representation. There is always a one-dimensional irrep of
this kind for Dy,

Table 3.4. The character table for Ds. The labels { and
n denote the identity and natural representations
respectively, and the label a denotes the irrep defined
in equation (3.115)

Irrep {e} {0, I.uzl {m, mp, m,ol}
i 1 1 1
a 1 1 —1
n 2 —1 0
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Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Let I' be a compact Lie group acting on a vector space V. 3
I-irreducible subspaces U; of V st.

V=Uelae.. &Uy

Isotypic Decomposition

This decomposition is not unique. So let

Wiy = Uaolao...oUnxn

Wk = U1@U2@...@Unk.

Then
V:W1@WQEB...EBW;(, k<ITl7

is uniques and it is called the Isotypic Decomposition of V.
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Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Example 3.30 Ler SO(2) act by matrix multiplication on the space, V, of 2 x 2
real matrices, such that a rotation, p, through an angle 6 is given by

a bY fcos@ —sinfyfa b .
p(c' d)_(sinﬁ‘ CO.‘GB)((' f.")‘ )

Any 2 x 2 real matrix can be expressed as the sum of two other matrices in the

manner
a by _ fa O 0 b i
(r_' d)_((- 0)+(o c!)' 8120

and so we can write V.= V\ & Vo where V| is the space of all real matrices of the

form
a 0
] )
(c' 0) (:126)

and Vi is the space of all real matrices of the form

0 b
_ 3.12
(0 d) 37
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Group Theory
Steady-State Bifurcation with D4-Symmetry

Symmetry Approach Lattice Patterns

Bifurcation Problem
ax n
Eff(x,,u), xeR’, peR

st. Jacobian = (df),.,,) and e-val{(df), .} = {0, .. .}.

v

Theorem

I is a symmetry group of x = f(x, ) iff yf(x, u) = f(yx, p).
Equivalently: M, f(x, u) = f(M,x, )

Isotropy Subgroups

The symmetry of a stationary sol x is givenby Xy = {y €I : yx = x}

Fixed Point Subspaces of Subgroup *

Fix(X)={xe V:ox=x,Yo € L}
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Group Theory
Steady-State Bifurcation with D4-Symmetry

Symmetry Approach Lattice Patterns

Theorem 4.5 (Equivariant branching lemma) Let I” be a finite group or com-
pact Lie group acting absolutely irreducibly on a real vector space, V, and let

d
df = f(x. 1) (4.52)
be a I'-equivariant bifurcation problem with f(0,0) = 0 and Df|, . = 0 that
satisfies equation (4.51). If T is an isotropy subgroup of T, satisfying
dim Fix(X) = 1, (4.53)

then there exists a unique smooth solution branch to fi{x. ) = 0 such that the
isotropy subgroup of each solution is X.
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Group Theory
Steady-State Bifurcation with D4-Symmetry

Symmetry Approach Lattice Patterns

Fig. 4.3. The generators of Dy, the symmetry group of a square, are m, a reflec-
tion, and p, a rotation through /2.

mp? /

Fig. 4.4. The reflections mp, mpj and mp" of Dy.
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Symmetry Approach Lattice Patterns

Table 4.1. The one-dimensional irreps of Dy

Irrep € P p? o m mp  mp?t  mp’
R’ 1 | 1 1 1 1 | |
R 1 | 1 1 —1 -1 —1 -1
Ry 1 -1 1 -1 1 -1 | -1
Ry 1 -1 1 -1 —1 1 —1 1

The natural representation of the group is given by the set of matrices

10 0 -1
me=(o 1) (s o)

10 0 -1
M, (0 _]), M’””',:(—I U)'
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Each irrep leads to a bifurcation problem

%:f(x,p), xeR", pcR

st. £(0,0) = 0, (df)0.0) = O and M, f(x, 12) = F(M, X, 12).

1-f(x, p) = f(1 -X,u)=>%:u+ax2+bxu+cu2+~--,
ax -
—1- 0 p) ==X p) = S =pxtaxc £
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_ 3
Myy-v = v,= My ={ep,r? } Zy,
— _ 3
M_i-v = v,=>M_4 —{m,mp,mp ,Mp°}.
A . D—]
\\ —) -|- // |
—+ \\ /’ —
AR
_____ AT
s h
T ’/ \\ +
- *
P z,
(a) ()
Fig. 4.5. (a) Solution eigenmode for the irrep R of T4 and (b) isotropy lattice
for the irrep R, of Ty, where inclusion is shown by an arrow.
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. 2 2 2
Rs: Z5 = {e,p=,m,mp-},
. 2 2 8
Ry: 25 = {e, p°,mp,mp°}.
- ;
b 1 ; - ar. : s n
. £
N |
_ 2 — | b---- P
. , \\ |
A E N B g = S
I s ! z’i
{a) ih) ic)
Fig. 4.6. Solution eigenmodes for the irreps (a) K5 and (b) Ry of D4, and (c) the
isotropy lattice for the irreps Ry and R4 of Dy, where inclusion is shown by an
aArrow.
”
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Symmetry Approach Lattice Patterns

for the reflection m shows that

*f](-\t-\'z-.l“) (fl(*»"]-\z-ﬁl))
= 4.67)
(f:(\'l.\’l-#l) fol—x1, x2, ) (e
must hold. so fi must be odd and f> must be even in x1. Applying the rotation
matrix
0 -1

M, = (I . ) (4.68)

gives

(7}‘.1[/\']-,\'}.[—1)) _ (fl(*—fl- X].#))l (4.69)

Jilxy, x2, 1) fal—x2, x1, 1)
From the second row we have
Sl xo, 1) = fol—xa, 21, 1) = falxa, xp, 1) = fi(xy, —xz, 1), (4.70)

since 7 is even in the first argument. Hence f is even in the second argument.
Thus up to cubic order, f; must take the form

Silxr, x2, @) = px) — ﬂ|.r]1 - :rg\'%.r]. (4.71)

where a; and a3 are real constants, and u is the real bifurcation parameter. Now
using equation (4.69) we can deduce the normal form to be

d, /dt x x x3x1
”, =u ! —a | a2 f (4.72)
dxa/dt X2 Xy X1X2
3 oo e I g 3
If we now make the substitution x; = |a|7x;. @2 = a2/|a| and immediately drop
the hats, the normal form is transformed to

duy/dey )
(d,\y’dr =u (\'3) Tix
112017 M635 Pattern Forma
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Steady-State Bifurcation with D4-Symmetry
Symmetry Approach Lattice Patterns

Pure Modes

(x1,0):  Zp(m) = {e, mp?},
(0,x2): Zp(m) = {e,m}.

_—
m

Fig. 4.7. Eigenmodes for the natural representation of Dj.
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Mixed Modes
(X1, %2 =x1): Z2(mp) = {e mp},
(x1,% =—x1): Zy(m) = {e,mp}.

mp ~ A:,-

Fig. 4.8. Diagonal modes that have isotropy subgroups with one-dimensional
fixed-point subspace in the natural representation of Dy

Fig. 4.9. Isotropy lattice for the natural representation of Da. Inclusion s shown
by an arrow,
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— 3ajx? — axx? —2ayx1x7
Df:('u 3a1x7 — axx3 2azxixa ) (4.75)

2 2
—2arx|x2 = 3apx; —az xy

Evaluating this at x2 = 1/ay, x2 = 0, gives the diagonal matrix
9
_ (-2 0 y
Df _( 0 ul —ag,-*a]})' (4.76)

so the solution is stable to perturbations in x; if i = 0 and to perturbations in
xy if @) < ap (since we must have p/a;, = 0 for the solution to exist at all). The
matrix is diagonal because we are using coordinates that correspond to the isotypic

components with respect to I, = {e, mp?}. the isotropy subgroup of the solution,

a 0 R o
(0) and (b)' a.bel. .77

2

which are

The other solution on the group orbit (0, x2), with = w/a, of course has the

same stability properties, but now the nonzero entries in the Jacobian are swapped

so that the eigenvalue —2ut corresponds to perturbations in the xz direction and
p(l — az/ay) to perturbations in the x| directiol

If we evaluate the Jacobian at the solution x; = x,, with ,\']3 = /(e +az), we
get

. —2aypfla) +az) —2axp/(ay + az) .
Df = . 7 o] 4.78
f (—2{13#/((:] +a) —2aypf(ay +a) i )

which is not diagonal. This is because the isotypic components with respect to the
isotropy subgroup in this case, X, = [e, mp}, are different, namely

(H) and ( 2 ) a,beR. (4.79)
a —b
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Fig. 4.10. Bifurcation diagrams for the bifurcation in a square box for various
values of the coefficients @) and a3 in equation (4.72). Solid lines represent stable
solutions and dashed lines unstable solutions. Branches of solutions of type {(x, 0)
and (x, x) are labelled R and § respectively.
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Planar Lattice

A planar lattice £ is generated by two linearly independent vectors /
and h € R%is

L= {I=nh + nh}

Dual Lattice £*

E*:{H1E1 +n2E2:Ri~Z:2W5U,i,j:1,2}

4

ux, t) =" z(e** + c.c.
KeL*

A\

Fall 2017 M635 Pattern Formation



Group Theory
Steady-State Bifurcation with D,-Symmetry

Symmetry Approach Lattice Patterns

Some possible convection planforms

A | )V UVU\
2R
3R

¢ { BP0

(a) (b) (c)

Figure: a) Stripes or rolls, b) squares and c) hexagons. Constructed from
filled contour plots of u = Y .(e™™ 4 e~ ™) for a) ky = (1,0), b)
ki = (1,0), kz = (0,1), and ¢) k; = (1,0), ky = (=1/2,v/3/2), ks =
(—1/2,-v/3/2).
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We now allow the pattern to vary in both horizontal directions, 1 and 2, but impose periodicity length
L = A. = 2 in both of these directions, so that the domain is a periodically repeating square. The
eigenvectors are then e**** and ¢+2 | We write nonlinear solutions as

u(wr, T2, 1) = 21 (E)e™! + Z1(H)e ™ + z0(t)e®? + Zo(t)e =2 (8)

We seek equations that are equivariant with respect to the group generated by rotations by angle /2 and
reflection in @1 (i.e. the group D4), and also by translations by p = (p1, p2) in 1 and z3 (the two-torus

T2,
Sy ppulzr, T2,t) = ulze, —z1,t) = 21(t)e'™ + Zi(t)e ™ 4 2a(t)e T 4+ Za(t)e’™ (9a)
kulTy, T2,t) = ul—z1,22,t) = n(t)e ™ + H{)e™ + n(t)e™ + 2(t)e™  (9b)
By (1,22, t) = u(ry+pi, 22+ p2,t) (5c)
= aft)eferte) 4 Zl[f)C (TP (£)ef(=27P2) 4 Zp(t)eH2te2) (9d)

leading us to define the action of these operators on the amplitudes as:

Seple, ) = (2,21) (10a)
wlz, ) = (21,2) (10b)
Ppplz1,22) = (721,60 2) (10c)
G v 2
f1 = pm —(@]a]” +aez|z(")a
tp = pz—(alz® +aqlz P2y
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14 Hexagons
We now consider a hexagonal lattice. We define three wavevectors k; = (cos2m(j — 1) /3, sin 2 (f
1)/3) oriented at angles of 1207 to one another, as in figure 7. We write solutions

uw(z, 1, 1) = 2, (£)e™T 4 zy(t)e™ T 4 zy(t)e™ T 4 cc. (14)

and seek equations of evolution for (21, 2p, 23) that are equivariant under the group generated by rotation
by 2m/3 and reflections (i.e. the group Dg), as well as by translations by p (the group T2).

Calculations similar to those for the case of the square lattice lead us to define the action of these operators
on the amplitudes as:

Sonz(a1,20,23) = (23,21, 22) (15)

k(z,22,23) = (81, 5,85) (16)

Polz1,22,z) = (X172, &Py, eF9Py) an

Contrary to the square case, the hexagonal case allows quadratic terms, since k1 + k2 + k3 = 0. Thus,

translation by p of (2, 2o, 23) transforms the term 2,23 as follows:
Fady — e WP WP _ poilkatkalpg, s, _ pRiPg g, (18)

Since this 1s the same way in which translation by p transforms z;, the term Z,2; can appear in the
evolution equation for z;.

The resulting equivariant equations to cubic order are:
i1 = (u—blz|? — cl|z|* + |za[®) 21 + azes (19)

and similarly for zy, z;, with real coefficients.

112017 M635 Pattern Forma



Group Theory

Steady-State Bifurcation with D,-Symmetry
Symmetry Approach Lattice Patterns

C (mm)

0.21 0.87 1.53 2.19 2385

(ww) z

112017 M635 Pattern Formatio



Group Theory
Steady-State Bifurcation with D4-Symmetry

Symmetry Approach Lattice Patterns

THANK YOU

112017 M635 Pattern Formatio



	Overview
	PDE Approach
	Turing Instability
	Combustion
	Analysis

	Symmetry Approach
	Group Theory
	Steady-State Bifurcation with D4-Symmetry
	Lattice Patterns


