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A novel method is described for noise reduction in chaotic experimental data whose dynamics are low dimensional. In 
addition, we show how the approach allows experimentalists to use many of the same techniques that have been essential for 
the analysis of nonlinear systems of ordinary differential equations and difference equations. 

1. Introduct ion  

Numerical  computation and computer graphics 
have been essential tools for investigating the be- 
havior of nonlinear maps and differential equa- 
tions. The pioneering work of Lorenz [25] was 

made possible by numerical integration on a com- 
puter, allowing him to take nearby pairs of initial 
conditions and compare the trajectories. Hrnon  
[19] discovered the complex dynamics of his cele- 
brated quadratic map with the aid of a pro- 
grammable  calculator. A variety of classical and 
modern techniques has been exploited to find peri- 
odic orbits, their stable and unstable manifolds 
[14], basins of attraction [26], fractal dimension 
[27], and Lyapunov exponents [10, 31, 37]. In 
some cases, numerical methods can establish rig- 
orously the existence of initial conditions whose 
trajectories have essentially the same intricate 
structure that one sees on a computer screen [18]. 
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Until recently, experimentalists have not been 
able to apply most of these methods to the analy- 
sis of experimental data, since they do not in 
general have explicit equations to model the be- 
havior of their apparatus. In cases where it is 
possible to find accurate models of the physical 
system, quantitative predictions about the behav- 
ior of actual experiments are possible [17]. How- 
ever, all that is available in a typical experiment is 
the time-dependent output (e.g. voltage) from one 
or more probes, which is a function of the dynam- 
ics. 

One fundamental  problem in the analysis of 
experimental data concerns the correspondence 
between the dynamics that governs the behavior 
of the apparatus and the discretely sampled time 
series that comprises the data. Another question is 
how to minimize the effect of noise. In this paper, 
we show how the t ime delay embedding method, 

now commonly used to reconstruct an attractor 
from experimental data, yields a novel procedure 
for reducing noise in data whose dynamics can be 
characterized as low dimensional. Moreover, we 

016%2789/90/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland) 



184 E.J. Kostelich and J.A. Yorke / Noise reduction 

show how the approach can be extended to allow 
experimentalists access to many of the analytical 
tools mentioned above. 

Section 2 reviews the time delay embedding 
method and some of its applications. Section 3 
introduces some of the problems associated with 
traditional filters and outlines our noise reduction 
method. 

2. The time delay embedding method 

As stated in section 1, one problem in analyzing 
experimental data is how to relate the measure- 
ments with the dynamics. Before the early 1980's, 
power spectra were the principal method for ana- 
lyzing such data. For instance, Fenstermacher 
et al. [13] relied heavily on power spectra to detect 
transitions from periodic to weakly turbulent flow 
between concentric rotating cylinders. However, 
Fourier analysis alone is inadequate for describing 
the dynamics. 

Other methods also have been used to analyze 
time series output from dynamical systems. Lorenz 
[25] used next amplitude maps to describe some 
features of the dynamics; that is, he plotted zn+ 1 
against zn where z n is the nth relative maximum 
of the third coordinate of the numerically calcu- 
lated solution. Such maps are often useful, not 
only for investigating features of the Lorenz at- 
tractor [32], but  also for instance in experiments 
on intermittency in oscillating chemical reactions 

[301. 
In the past decade, the time delay embedding 

method has come into common use as a way of 
reconstructing an attractor from a time series of 
experimental data. In this approach, one supposes 
that the dynamical behavior is governed by a 
solution traveling along an attractor #t (which is 
not observable directly). However, one assumes 
there is a smooth function that maps points on 
the attractor to real numbers (the experimental 

~tExisting numerical methods require the attractor to be low 
dimensional. 

measurements). In the embedding method, one 
generates a set of m-dimensional points whose 
coordinates are values in the time series separated 
by a constant delay [11]. For example, when m = 3, 
the reconstructed attractor is the set of points 

( X  i = (Si, Si+~, Si+2~.)) where ~" is the time delay. 
Takens [34] has shown that under suitable hy- 
potheses, this procedure yields a set whose prop- 
erties are equivalent to those of the original 
attractor provided that the embedding dimension 
m is large enough. 

In principle, the embedding method allows one 
to study the dynamics in detail. The earliest appli- 
cations may be called static in that the analysis 
focuses on the geometric properties of the set of 
points on the reconstructed attractor. For exam- 
ple, phase portraits and Poincar6 sections are used 
in ref. [5] to help determine the transition between 
quasiperiodic and chaotic flow in a Couet te-  
Taylor experiment. Another important application 
is the estimation of attractor dimension from 
experimental data, for which there is a large litera- 
ture [27]. In addition, various information theo- 
retic notions can be used to find good choices of 
embedding dimension and time delay [15]. 

More recent applications of the embedding 
method are quite different in nature and can be 
called dynamic in that information about the dy- 
namics is stored in the computer for analysis. 
With each data vector xi, one stores the "next"  
vector, for example, xi+ 8 for some 6 > 0. This 
makes it possible to compute a linear approxima- 
tion of the dynamics in a neighborhood of x i, 
assuming that there is a low-dimensional dynami- 
cal system underlying that data .2. In particular, a 
linear approximation provides an estimate of the 
Jacobian of the map at x~ [11]. Eckmann et al. [10] 
use linear maps computed in this way to integrate 
a set of variational equations and find the positive 
Lyapunov exponents #3. 

#2This material was first presented by D. Ruelle at a Nobel 
symposium in 1984. 

~*3Wolf et al. [37] have proposed a different method in which 
nearby pairs of points are followed to estimate the largest 
Lyapunov exponent. 
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In fact, the time delay embedding method pro- 
vides a powerful set of tools for analyzing the 
dynamics, the breadth of which may not have 
been realized by Eckmann and Ruelle. In the 
remainder of this paper, we discuss two novel 
applications that are possible, specifically: 

(1) Noise reduction. Since one can approximate 
the dynamics at each point, it becomes possible to 
identify and correct inaccuracies in trajectories 
arising from random errors in the original time 
series. Numerical evidence suggests that the noise 
reduction procedure described below improves the 
accuracy of other analyses, such as Lyapunov 
exponents and dimension calculations. 

(2) Simplicial approximations. Linear approxi- 
mations can be computed at each point on a grid 
in a neighborhood of the attractor to form a 
simplicial approximation of the dynamical system. 
This can be used to locate unstable periodic orbits 
near the attractor. 

We consider noise reduction in section 3. 

3. Noise  reduction 

The ability to extract information from time- 
varying signals is limited by the presence of noise. 
Recent experiments to study the transition to tur- 
bulence in systems far from equilibrium, like those 
by Fenstermacher et al. [13], Behringer and Ahlers 
[2], and Libchaber et al. [24], succeeded largely 
because of instrumentation that enabled them to 
quantify and reduce the noise. However, it is often 
expensive and time consuming to redesign experi- 
mental apparatus to improve the signal to noise 
ratio. 

An important question, therefore, is how the 
experimental data can be filtered or otherwise 
preprocessed before it is analyzed further. One 
common approach is to use Fourier analysis: one 
might model the noise as a collection of high- 
frequency components and subtract them from a 
power spectrum (or Fourier transform) of the in- 
put data. The transform can be inverted to yield a 

new time series with some of the high-frequency 
components removed. This is the basic idea be- 
hind Wiener and other bandpass filters [29]. 

However, as noted previously, power spectral 
analysis is insufficient to characterize the dynam- 
ics when the data are chaotic. Since the power 
spectrum of a low-dimensional chaotic signal re- 
sembles that of a noisy one, the suppression of 
certain frequencies can alter the dynamics of the 
filtered output signal. Badii et al. [1] have shown 
that a simple low-pass filter effectively introduces 
an extra Lyapunov exponent that depends on the 
cutoff frequency. If the cutoff frequency is suffi- 
ciently low, then the filter can increase the fractal 
dimension of the reconstructed attractor. This re- 
sult also has been confirmed by Mitschke et al. 
[28] with data from an electronic circuit. 

We now consider a different approach and show 
how the time delay embedding method can be 
exploited to reduce the noise, at least in cases 
where the time series can be viewed as a dynami- 
cal system with a low-dimensional attractor. Our 
objective is to use the dynamics to detect and 
correct errors in trajectories that result from noise. 
This is done in two steps once an embedding 
dimension m and a time delay "r have been fixed. 

In the first step, we consider the motion of an 
ensemble of points in a small neighborhood of 
each point on the attractor in order to compute a 
linear approximation of the dynamics there. In the 
second step, we use these approximations to con- 
sider how well an individual trajectory obeys them. 
That is, we ask how the observed trajectory can be 
perturbed slightly to yield a new trajectory that 
satisfies the linear maps better. The trajectory 
adjustment is done in such a way that a new time 
series is output whose dynamics are more consis- 
tent with those on the phase space attractor. 

This approach is fundamentally different from 
traditional noise reduction methods. Because we 
consider the motion of points on a phase space 
attractor, we are using information in the original 
signal that is not localized in a time or frequency 
domain. Points that are close in phase space corre- 
spond to data that in general are widely and 
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irregularly spaced in time, due to the sensitive 
dependence on initial conditions on chaotic at- 
tractors. In contrast, Kalman [4] and similar filters 
examine data that are closely spaced in time; 
bandpass filters operate in the frequency domain. 

4. Eckmann-RueHe linearization 

f(x)=Ax+b 
l i t  

Fig. 1. Schematic diagram for the first stage of the noise 
reduction method. A collection of points in an c-ball about the 
reference point Xre t is used to find a linear approximation of 
the dynamics there. 

The discrete sampling of the original signal 
means that the points on the reconstructed attrac- 
tor can be treated as iterates of a nonlinear map f 
whose exact form is unknown. We assume that f 
is nearly linear in a small neighborhood of each 
attractor point x and write 

f(x) = A x + b = - L ( x )  

for some m × m matrix A and m-vector b. (The 
matrix A is the Jacobian of f at x.) 

This approximation, which we call the Eck- 
mann-Ruelle  linearization at x, can be computed 
with least-squares methods similar to those de- 
scribed in refs. [11, 10]. Given a reference point 
xra, let {xi}7-x be a collection of the n points 
which are closest to x~t. With each point x i we 
store the next point (i.e., the image of x;), denoted 
yi ~4. The k th  row a k of A and the k th  compo- 
nent b k of b are given by the least-squares solu- 
tion of the equation 

Yk ffi bk + ak"  X, (1) 

where Yk is the k th component of y and the dot 
denotes the dot product. Fig. 1 illustrates the 
idea .5. 

*4The points x~ are points on the attractor which are not 
consecutive in time. The subscript i merely enumerates all the 
points on the attractor contained within a small distance c of 
Xr~t. In this notation, x i and y~ are consecutive in time. 

~SFarmer and Sidorowich [12] observe that the Eckmann-  
Ruelle linearization can be used for prediction. Given a refer- 
ence point x~, find the Eckmann-Ruelle linearization A~x + b t, 
compute xt+ 1 ~A~x~ + hi, and repeat the process to get the 
predicted trajectory. 

We mention three difficulties in computing the 
local linear approximations in the subsections be- 
low. 

4.1. 1II conditioned least squares 

There is a particular problem when one tries to 
compute solutions to eq. (1) with a finite data set 
of limited accuracy that has not been addressed in 
previous papers [10, 31]. Suppose for example that 
all the points in a neighborhood of x~f lie nearly 
along a single line, i.e., the attractor appears one 
dimensional within the available resolution. Al- 
though it is possible to measure the expansion 
along the unstable manifold at Xre f, there are not 
enough points in other directions to measure the 
contraction. Hence it is not possible to compute a 
2 × 2 Jacobian matrix accurately. Any attempt to 
do so will result in an estimate of the Jacobian 
whose elements have large relative errors. This 
kind of least-squares problem is ill conditioned. 

The ill conditioning can be avoided by changing 
coordinates so that the first vector in the new basis 
points in the unstable direction .6. A one-dimen- 
sional approximation of the dynamics is com- 
puted using the new coordinates; that is, we 
approximate the dynamics only along the unstable 
manifold. We recover the matrix A by changing 
coordinates back to the original basis. 

For example, if we are working in the plane and 
the unstable direction is the line y = x, then we 
rotate the coordinate axes by 45 ° . The dynamics 
are approximated by a one-dimensional linear map 

*6This is done by computing the right singular vectors [9] of 
the n × rn matrix whose j t h  row is xj. The procedure is called 
principal component analysis in the statistical literature. 
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computed along the line y = x. Then we rotate 
back to the original coordinates. (The resulting 
matrix A has rank 1 in this example.) This ap- 
proach substantially enhances the robustness of 
the numerical procedure. 

4.2. Finding nearest neighbors 

A second problem is finding an efficient way to 
locate all of the points closest to a given reference 
point. The dynamical embedding method imposes 
stringent requirements on any nearest-neighbor 
algorithm. The storage overhead for the corre- 
sponding data structures must be small, because 
there are tens of thousands of attractor points. 
The algorithm must be fast, since there is one 
nearest-neighbor problem for each linear map to 
be computed. 

We solve this problem by partitioning the phase 
space into a grid of boxes that is parallel to the 
coordinate axes. Each coordinate axis is divided 
into B intervals. (Fig. 2 illustrates the grid in two 
dimensions.) Each point on the attractor is as- 
signed a box number according to its coordinates. 
For example, a point on the plane whose first 
coordinate falls in the j t h  interval (counting from 
0) along the x axis and whose second coordinate 
falls in the k th interval along the y axis is as- 
signed to box number kB +j .  The  list of box 
numbers is sorted, carrying along a pointer to the 
original data point. Given a reference point Xre f, 
its box number is found using the above formula. 
A binary search in the list of box numbers then 
locates the address of Xre t and all the other points 

B 2 - B 

B 

0 

B 2 - B + I  

B + I  

1 

B 2 -  B + 2 . . .  B2 _ I 

B + 2  -.. 2 B - 1  

2 ... B - 1  

Fig. 2. Box numbering scheme in two dimensions. The attrac- 
tor is normalized to fit in the unit square. The bottom row of 
boxes rests against the x axis and the leftmost row of boxes 
against the y axis. 

in the same box number. The search is extended if 
necessary to adjacent boxes. 

Only a crude partition is needed for this algo- 
rithm to work efficiently (typically we choose B = 
40), and the grid is extended only to the first three 
coordinate axes. When the embedding dimension 
is larger than three, a preliminary list of nearest 
neighbors is obtained using only the first three 
coordinates of each attractor point. The final list is 
extracted by computing the distances from Xre f to 
each point in the preliminary list. 

Although there are circumstances where this 
algorithm can perform poorly (e.g., when most of 
the attractor points are concentrated in a handful 
of boxes), the distribution of points on typical 
attractors is sufficiently uniform that the running 
time is very fast. Memory use is also efficient: a 
set of N attractor points requires 3N storage loca- 
tions. In contrast, the tree-search algorithm ad- 
vocated in ref. [12] requires several times more 
storage (although the lookup time is probably 
slightly less). Because N -- 10 5 in typical applica- 
tions, we believe that the box-grid approach (or 
some variant) is the most practical. A survey of 
other nearest-neighbor algorithms is given in ref. 
[31. 

4.3. Errors in oariables 

There is a potential difficulty in the use of 
ordinary least squares to compute the linear maps. 
In the usual statistical problem of fitting a straight 
line, one has observations (xi ,  Yi) where x i is 
known exactly and y~ is measured. One assumes 
that y~ = a o + a lx  ~ + c~, where the ~ are indepen- 
dent errors drawn from the same normal distri- 
bution. (Analogous assumptions hold in the 
multivariate case.) In the present situation, how- 
ever, both x~ and y~ are measured with error. It 
can be shown that the ordinary least-squares 
method produces biased estimates of the parame- 
ters a 0 and a x in this case [16, 23]. In practice this 
does not seem to be a serious problem, but statis- 
tical procedures to handle this situation (the so- 
called "errors in variables" methods) may provide 
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Fig. 3. Schematic diagram of the trajectory adjustment proce- 
dure. The trajectory defined by the sequence { x~ } is perturbed 
to a new trajectory given by { :ti } which is more consistent with 
the dynamics. In this example we show what the perturbed 
trajectory might look like if the dynamics were approximately 
horizontal translation to the right. 

an alternative approach to noise reduction. We 
consider this question in the appendix. 

5. Trajectory adjustment by minimizing 
serf-inconsistency 

The Eckmann-Ruelle linearization procedure 
described above is computed and the resulting 
maps are stored for a sequence of reference points 
along a given trajectory (for the results quoted 
here, the sequence usually contains 24 points). We 
now consider how to perturb this trajectory so 
that it is more consistent with the dynamics. The 
objective is to choose a new sequence of points :~ 
to minimize the sum of squares 

The trajectory adjustment can be iterated. That 
is, once a new trajectory xt has been found, one 
can replace e a c h x  i in eq. (2) by xt and compute a 
new sequence ( :~i )- 

We place an upper limit on the distance a point 
can move. Points which seem to require especially 
large adjustments can be flagged and output un- 
changed. (This may be necessary if the input time 
series contains large "glitches" or if nonlinearities 
are significant over small distances in certain re- 
gions of the attractor.) 

When the input is a time series, we modify the 
above procedure slightly since we require a time 
series as output. The trajectory adjustment is done 
so that changes to the coordinates of xi (corre- 
sponding to particular time series values) are made 
consistently for all subsequent points whose co- 
ordinates are the same time series values. For 
example, suppose the time delay is 1 and the 
embedding dimension is 2. Then trajectories are 
perturbed so that the second coordinate of the ith 
point is the same as the first coordinate of the 
( i +  1)st point. That is, when x~=(si,  s~+l) is 
moved to the point :~i = (si, Si÷s), we require that 
the first coordinate of x~+l be si+l- 

~wll~,- x/I[ 2 

+ll:~,-  L,-x(~,-1)ll  2 + II~,+x - L,(~,)II 2, (2) 

where L(x i )  = Aix~ + b~, w is a weighting factor, 
and the sum runs over all the points along the 
trajectory #7. Eq. (2) can be solved using least 
squares. Heuristically, eq. (2) measures the self- 
inconsistency of the data, assuming that the linear 
approximations of the dynamics are accurate. See 
fig. 3. We say the new sequence (x~ } is more 
self-consistent. 

~*7In the results described in this paper, the Eckmann-Ruelle 
linearization procedure is done using a collection of points 
within a radius of 1 -6~  of each reference point, depending on 
the embedding dimension, the dimension of the attractor, and 
the number of attractor points. This results in collections of 
50-200 points per ball, which gives reasonably accurate map 
approximations without making the computer program too 
slow. The weighting factor w is set to 1. 

6. Results using experimental data 

We note that the attractor need not be chaotic 
for this noise reduction procedure to be effective. 
Fig. 4a shows a phase portrait of noisy measure- 
ments of wavy vortex flow in a Couette-Taylor 
experiment [20]. This flow is periodic, so the at- 
tractor is a limit cycle (widened into a band be- 
cause of the noise) and the power spectrum 
consists of one fundamental frequency and its 
harmonics above a noise floor. See fig. 4b. Figs. 
4c, 4d show the same data after noise reduction. 
The noise reduction procedure makes the limit 
cycle much narrower, and the noise floor in the 
power spectrum is reduced by almost two orders 
of magnitude. However, no power is subtracted 
from any of the fundamental frequencies, and in 
fact some harmonics are revealed which previously 
were obscured by the noise. 
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Fig. 4. Phase portraits and power spectra for measurements of wavy vortex flow in a Couette-Taylor experiment, i(a), (b) Phase 
portrait and power spectrum before noise reduction is applied; (c), (d) after noise reduction; (e), (f) after a low-pass filter is applied 
to the original data. The vertical axis in (b), (d) and (f) is the base-lO logarithm of the power spectral density; the horizontal axis is in 
multiples of the Nyquist frequency. 

These results are significantly different from 
those obtained by low-pass filtering. Figs. 4e, 4f 
show the phase portrait and power spectrum when 
the original data are passed through a 12th-order 
Butterworth filter with a cutoff frequency of 0.35. 
The dynamical noise reduction procedure is more 

effective than low-pass filtering since the noise 
appears to have a broad spectrum. 

However, the dynamical noise reduction method 
appears to subtract power from a mode whose 
fundamental frequency is approximately 0.3 times 
the Nyquist frequency. We do not know exactly 
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Fig. 5. Phase portraits and power spectra for measurements of weakly chaotic flow in a Couette-Taylor experiment. (a), (b) Phase 
portrait and power spectrum before noise reduction is applied; (c), (d) after noise reduction. The units for the power spectrum plots 
are the same as those in ref. [5]. 

why this occurs. However, this peak corresponds 
to the rotation frequency of the inner cylinder and 

may result from a defect in the Couette-Taylor 

apparatus [33]. We do not consider this to be a 
serious problem, because the power associated with 

this mode is several orders of magnitude smaller 
than that of the wavy vortex flow. 

We emphasize that our objective is to find a 

simple dynamical system that is consistent with 
the data. It is possible for this method to eliminate 
certain dynamical behavior from an attractor if 
those dynamics have very small amplitude, as fig. 
4f shows. This situation is most likely to arise 

when there are not enough data to distinguish 

such dynamics from random noise. In the present 

example, the noise reduction procedure reveals the 
limit cycle behavior quite well #s. 

The results obtained by applying the method to 
chaotic data from the Couette-Taylor fluid flow 
experiment described in ref. [5] are shown in fig. 5. 

Fig. 5a shows a two-dimensional phase portrait of 
the raw time series at a Reynolds number R / R  c = 

12.9, which corresponds to weakly chaotic flow [5]. 
The corresponding phase portrait from the filtered 
time series is shown in fig. 5b. Figs. 5c, 5d show 

*SWe have not attempted to find the smallest amplitude at 
which the noise reduction procedure can distinguish quasiperi- 
odic from periodic flow. In general this will depend on the 
amount of data, the sampling rate, the embedding dimension, 
and other factors. 
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the power spectra for the corresponding time 
se r i e s  #9. 

It is difficult to estimate how much noise is 
removed from the data in this example on the 
basis of power spectra. One problem is that the 
transition from quasiperiodic to weakly chaotic 
fluid flow is marked by a sudden rise in the noise 
floor in the power spectrum (cf. fig. 3 in ref. [5]). 
Hence one cannot determine how much of the 
noise floor is due to deterministic chaos and how 
much results from broad-band noise. The noise 
reduction procedure described here has the effect 
of reducing the power in the high-frequency com- 
ponents of the signal. One question therefore is 
whether reducing the high-frequency noise corre- 
sponds to discovering the true dynamics which 
have been masked by noise. We believe that the 
answer is yes, based on those cases where there is 
an underlying low-dimensional dynamical system. 
However, in chaotic processes some high-frequency 
components remain, because they are appropriate 
to the dynamics. 

stored, and a time series is generated by adding a 
uniformly distributed random number to each it- 
erate. This simulates a time series with measure -  

m e n t  noise ,  i.e., a time series where noise results 
from errors in measuring the signal, not from 
perturbations of the dynamics. 

We measure the improvement in the signal after 
processing by considering the p o i n t w i s e  error  

ei = IIx/+l -f(xi, x/-1)ll, 

i.e., the distance between the observed image and 
the predicted one. Let the m e a n  error  be 

(re?/lj2 
e-- N I , 

the rms value of the pointwise error over all N 
points on the attractor. We define the noise  reduc-  

t ion as 

R = 1 - Efitted/Enoisy , 

7. Numerical experiments on noise reduction 

One important question is how much noise this 
method removes from the data. The power spectra 
above suggest that the method eliminates most of 
the noise, but it is impossible to give a precise 
estimate for typical chaotic experimental data. 

However, the H ~ o n  map [19] provides a conve- 
nient way to quantify the noise reduction, because 
it can be written as a time delay map of the form 

x,+ 1 = f ( x , ,  x , _ l )  = 1 - a x  2 + f l x i _  1. (3) 

We use eq. (3) to generate a time series as follows 
(with the standard parameter values a = 1.4, fl = 
0.3). We choose an initial condition and discard 
the first 100 iterates. The next 32768 iterates are 

:~gThe time series consists of 32768 values, from which an 
attractor is reconstructed in four dimensions. Linear maps are 
computed using 50-100 points in each ball. Trajectories a r e  

fitted using sequences of 24 points. 

where the mean errors are computed for the ad- 
justed and original noisy time series, respectively. 
The quantity R is a measure of the self-con- 
sistency of the time series. (In other words, R 
measures how much better on the average the 
output attractor obeys eq. (3) as one hops from 
point to point.) 

When 1%. noise is added to the input as de- 
scribed above, the noise reduction (measured with 
the actual map) is 79% .1°. Nearly identical results 
are obtained when the input contains only 0.1% 
noise. In addition, noise levels can be reduced 
almost as much in cases where the noise is added 
to the dynamics, i.e., where the input is of the 

form (X i+ l  " Xi+l = f ( x i  + ~i' X i -1  + 1'~i-1), ~i '  

~i-1 random}. When the program is run on noise- 
less input, the mean error in the output is 0.025% 
of the attractor extent, which suggests that errors 

•t°The pointwise error is measured using eq. (3). However, 
the attractor can be embedded in more than two dimensions 
when performing the noise reduction. 
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arising from small nonlinearities are negligible 
when the input contains enough points. 

8. Simplieial approximations of dynamical systems 

Recent work has shown that simplicial approxi- 
mations of dynamical systems can reproduce the 
behavior of the original system to high accuracy 
[36]. (See also ref. [35] for a bilinear approach.) In 
particular, the fractal structure of the original 
attractors and basin boundaries is preserved over 
many scales. Such approximations can yield sig- 
nificant computational savings, especially when 
the original system consists of ordinary differential 
equations. 

This approach can be extended in a natural way 
to generate simplicial approximations of the dy- 
namics on attractors reconstructed from experi- 
mental data. Our objective here is to find an 
approximate dynamical system in a neighborhood 

of the attractor as follows. 
A simplex in an m-dimensional space is a trian- 

gle with m + 1 vertices. Suppose the map is known 
at each point on a grid. Then there is a unique 
way to extend the map linearly to the interior of 
the simplex S whose vertices are grid points. 
Given a point P in the interior of S, let { b i )~o 
be its corresponding barycentric coordinates (see 
ref. [36] for an algorithm to compute them). Let 
f(vi) be the map at the ith vertex. The dynamical 
system at P is iterated by computing 

~(P)  = ~ b,f(o,). (4) 
i = 0  

We apply this method to experimental data by 
finding a linear approximation of the dynamics at 
each vertex v i with the least-squares method de- 
scribed above, using a collection of points in a 
small ball around oi. The maps are stored and 
retrieved using a hashing algorithm similar to that 
described in ref. [36]. This yields a piecewise linear 
approximation of the dynamics from a set of 
experimental data which can be analyzed with the 

methods that previously were available only to 
theorists .11. 

We illustrate the approach using a time series of 
32768 values from the Hrnon map with a = 1.2, 
fl = 0.3 using eq. (3) and adding 0.1% noise as 
described above. The original attractor is shown in 
fig. 6a. We take a grid of points which are spaced 
at 1% intervals (this and subsequent distances are 
expressed as a fraction of the original attractor 
extent). The time series is embedded in two di- 
mensions, and a linear approximation of the dy- 
n~imics is computed at each grid point for which 
50 or more attractor points can be collected with a 
ball of radius 0.03; the set of such grid points is 
shown in fig. 6b. We take an initial condition near 
the original attractor and show the first 3000 iter- 
ates using eq. (4) in fig. 6c. Although some defects 
are visible, the attractor produced by the approxi- 
mate dynamical system looks almost identical to 

the original one. 
One application of simplicial approximations is 

the location of periodic saddles and the estimation 
of the largest eigenvalue of the corresponding 
Jacobian. That is, if x is a periodic point of period 
p, then we find the eigenvalue of D f P ( x )  of 
largest modulus, where DfP(x) refers to the ma- 
trix of partial derivatives of the p th  iterate of the 

map f evaluated at x. 
Given an initial guess for x, one can apply 

Newton's method using the maps computed at the 
grid points and eq. (4) to locate the saddle using 
the simphcial approximations. Likewise, eq. (3) 
can be used to locate the corresponding "exact" 
saddle. Saddle orbits up to period 8 have been 
computed in this way. In all cases, the saddle 
point for the simplicial approximation is within 
2% of the corresponding saddle point for the 
Hrnon map. Table 1 shows the largest eigenvalues 
of the saddle orbits. (The columns labeled m = 2 
and m = 3 refer to the embedding dimension used 
to reconstruct the attractor.) In most cases, the 

~XlThis approach is less ambitious than that of Crutchfield 
[8], who attempts to find a single set of nonlinear difference 
equations that creates the observed attractor. 
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Fig. 6. (a) Htnon attractor computed from eq. (3) with a ffi 1.2, 
fl ffi 0.3. (b) 1% grid on which linear approximations of the 
dynamics are computed from the available attractor points. (c) 
Attractor produced by the simplicial approximations. 

relative error is only a few percent, and in no case 
exceeds 25%. (The largest relative error is for the 
period 8 saddles, where one finds the eigenvalue of  
the product of  8 Jacobians computed from the 
least squares.) 

This method can be extended to experimental 
data sets. However, there are relatively stringent 
requirements on the data that can be handled: the 
time series must be long enough to trace out many 
trajectories near the principal unstable saddle or- 
bits, and the noise level must be low. (Presumably, 
noisy data can be preprocessed using the approach 

described in section 4.) The current computer im- 
plementation uses a large amount of  disk space to 
store the linear map approximations at the grid 
points. 

We have constructed a simplicial approximation 
for an attractor obtained from a Be lousov-  
Zhabotinskii chemical reaction [7, 30]. The attrac- 
tor is reconstructed in three dimensions from a set 
of  32 768 measurements of  bromide ion concentra- 
tion. The phase portrait is shown in fig. 7a. 

Linear approximations of  the dynamics are 
computed at each point of  a grid consisting of  50 
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Table 1 
The largest eigenvalues of the Jacobian of the periodic orbits 
located using the simpficial approximation of the H~non 
attractor. 

Period m ffi 2 Exact m ffi 3 

1 1.793 1.695 1.757 
2 2.178 2.199 2.183 
4 4.226 4.329 4.051 
6 10.38 10.70 9.626 
6 10.38 11.32 12.12 
8 25.80 24.88 30.25 
8 20.02 20.60 20.38 
8 17.70 24.32 21.70 

the attractor. Using initial guesses from some of 
the trajectories, we apply Newton's method to 
locate the saddle orbit shown in fig. 7b. Moreover, 
we obtain estimates of the Jacobian Df  of the map 
evaluated at a point on the saddle orbit. The 
eigenvalues of Df  are estimated as h 1 = 1.14, 
h2=  0.102, and ~3 = - 1 . 5 3 .  These quantitative 
results confirm that the orbit is a saddle since h 1 > 
0 > ~3. (Note that one expects ~2 = 0 for a flow 
generated from a set of differential equations.) 

9. Conclusion 

intervals along each coordinate axis for which 50 
or more attractor points can be located within an 
8% radius of the grid point. This produces a 
database of 59 550 maps. We observe from graphi- 
cal evidence that many trajectories approach what 
appears to be a period-3 saddle in the middle of 

ia) 

Methods for approximating the dynamics of 
attractors reconstructed from experimental data 
provide powerful tools. Most of the same proce- 
dures that have been so important for theoretical 
insight, such as Poincar6 maps, unstable fixed 
points and their manifolds, basin boundaries, and 
the like, are now available to experimenters, at 
least in cases where the dynamics are low dimen- 
sional. There is little doubt that these tools will 
lead to breakthroughs in the understanding of a 
wide variety of physical systems. However, consid- 
erable effort is needed before we learn which kinds 
of systems will benefit most from these types of 
analyses. Significant improvements in technique 
will certainly extend the applicability of dynami- 
cal embedding methods, for example to higher- 
dimensional attractors. 

(b) 

Fig. 7. (a) The attractor reconstructed from a time series of 
bromide ion e o n e e n t r a t i ~  in a Belousov-Zl~botinsldi  chemi- 
cal reaction. (b) The period-3 saddle orbit. 

Appendix 

In this appendix we outline a possible alterna- 
tive noise reduction method based on the theory 
of least squares when all the quantifies in the 
regression are measured with error. 

In ordinary least squares, the variables in the 
problem fall into two classes: the independent 
variables, which are known exactly, and the de- 
pendent variables, which are observations assumed 
to be functions of the independent variables. The 
dependent variables are subject to random errors 
that are assumed independent and identically dis- 
tributed (i.i.d.). 
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On an attractor reconstructed from experimen- 
tal data, we assume that the mapping which takes 
points in a sufficiently small ball to their images is 
approximately linear. However, the locations of all 

the points are subject to small random errors 
because of the noise. Hence one cannot describe 
the points as independent variables and their im- 
ages as dependent variables. The usual least- 
squares method produces a biased estimate of the 
linear map, and this bias does not decrease if more 
observations are added [16, 23]. 

The so-called "errors in variables" least-squares 
methods can be used to handle the latter problem. 
This approach can be used to obtain both an 
estimate of the linear map as well as estimates of 
the "' true" values of each of the observations. 

At first this appears to be an underdetermined 
problem: from n pairs of observations one wants 
to compute the parameters of the functional rela- 
tion between them as well as estimates of the n 
actual pairs *re. However, it is possible to solve 
this problem by making some assumptions about 
the errors [16, 23]. 

In our case, we assume that the errors in the 
location of each point and its image are i.i.d. In 
particular, we let the covariance matrix of the 
errors in the variables be the identity matrix. This 
assumption is valid whenever the noise is indepen- 
dent of the dynamics #t3. 

We illustrate the procedure for the case where 
we are given a collection of n points (in R m) and 
their images. Following Jefferys [21], we form a set 
of n equations of condition given by 

~ ( x ~ )  = x n + ~ - A x ~ - b ~ - x ~ + , - L ( x , ) ,  (5) 

where x~ is the ith point, xn+~ is its observed 
image, A is an m × m matrix, and b is an m-vec- 
tor. The goal is to find estimates of L (i.e., A and 

*12In the statistical literature, the problem is said to be 
unidentified. 

*t3Dynamical noise (i.e., each point is perturbed slightly 
before iterating) yields a covariance matrix which depends on 
the point. However, as long as the dynamical noise is small, 
our assumptions about the covariance matrix of the errors 
should not compromise the accuracy of the method. 

b), together with perturbations 8, such that 

[ i (x i  + vi) = (xn+x + vn+i) - L ( x ,  + vi) = 0 

and such that the quadratic form 

So = ½ ~to - l~ (6 )  

is minimized. The superscript t denotes transpose 
and o is the covariance matrix of the observations 
(which we assume is the identity matrix here). 

This minimization problem can be solved using 
Lagrange multipliers (see refs. [21, 22] for a nu- 
merical algorithm). The solution gives A and b 
together with estimates x i + t3i of the "true" ob- 
servations. It can be shown [16] under fairly mild 
hypotheses that the estimates of L and the obser- 
vations are the best in the class of linear estima- 
tors. 

One way to approach noise reduction is to 
extend eq. (5) to include several iterations of the 
observed points. Given a collection of points in a 
ball, together with the next p iterates of each 
point, the method above is used to find a collec- 
tion of linear maps Lx, L 2 . . . .  , Lp approximating 
the dynamics. The method also finds estimates 
of the actual observations. In this approach, 
therefore, the calculation of the maps and the 
adjustment of the trajectories is done in one step. 
Moreover, each point and its image exactly satisfy 
a linear relationship. 

Of course, p cannot be too large, because 
nonlinear effects eventually will become significant 
when the dynamics are chaotic. On the other 
hand, eq. (5) provides a natural way to include 
quadratic or other nonlinear terms. 

We have written a computer program to imple- 
ment this alternative noise reduction algorithm. So 
far, the results of this approach have not been as 
good as those from the method described in the 
main part of the paper, but further refinement 
should improve them. 
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