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We study the effects of thermal noise in a stochastic, Langevin formulation, of a spatio-temporal
pattern-forming Partial Differential Equation (PDE) model with circular domain. Modification
of a recently developed numerical integration scheme reveals that the pattern-forming model
exhibits, in the presence of noise, a greater tendency towards dynamic states and towards inter-
mittent patterns in which ordered states appear randomly, preceded and succeeded by disorga-
nized states. In order to gain additional insight, we focus on a region of parameter space where
the patterns of the deterministic system arise from the steady-state interaction of two pairs
of modes with wave numbers in a 1:2 ratio. Analysis of the associated stochastic normal form
equations allows us to explain the underlying bifurcations of the noise-induced patterns, some
of which had only been observed, until now, in laboratory experiments.
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1. Introduction

Noise is ubiquitous to the physical world. Histori-
cally, it has been considered a nuisance to scientists
and engineers who have used considerable effort to
suppress it. In more recent years the constructive
effects of noise have been examined. In particu-
lar, the introduction of noise in a dynamical sys-
tem can result in organized behavior that does not
exist in the absence of noise. An example is stochas-
tic resonance; a phenomenon where an unobservable
weak signal can be amplified by noise of the proper
intensity to the point where it becomes observ-
able [McNamara et al., 1988]. Another example is
the formation of stochastic limit cycles about equi-
libria of heteroclinic and homoclinic connections.
For instance, consider the dynamics of a particle
moving along a double-well potential, described by
the unforced Duffing oscillator ẍ = −ẋ + x − x3 +
ξ(t), where ξ(t) represents a Gaussian white noise
function. In the absence of noise, i.e. when ξ(t) = 0,

the particle will quickly settle into one of the two
equilibrium states represented by the minima of the
potential function, see Fig. 1.

In the presence of noise, however, the noise
intensity might be too small to change the eigen-
values of a system, but large enough to keep the
solution from approaching an equilibrium. Thus the
solution will linger around an equilibrium only for
finite and random amounts of time, as is now shown
in Fig. 2.

In spatially-extended systems, equilibrium
points might have a spatial structure, leading to
steady-states in the form of ordered patterns. In
those systems, stochastic limit cycles can lead to
intermittent patterns in which one or more ordered
patterns appear randomly as the system dynam-
ics approaches a neighborhood of an equilibrium
state. In this work, we consider stochastic limit
cycles but with particular interest on pattern-
forming systems that can exhibit cellular structures.
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Fig. 1. Motion of a particle on a double-well potential function. In the absence of noise, the system dynamics quickly settles
into an equilibrium point. Which equilibrium point is selected, (left) or (right), depends on the initial conditions.

Such patterns are common features of many non-
linear phenomena. In material science, they appear
in mud cracking patterns, in ceramics and miner-
als [Aboav, 1970], in polycrystalline metals, in soap
suds, and in magnetic bubbles [Glazier et al., 1992].
They are also found in honey combs [Kepler, 1966;
Dormer, 1980], in flame fronts [Gorman et al., 1994],
and in vibrated granular systems [Tsimring, 1997].
Understanding the mechanisms that govern the spa-
tial and temporal evolution of cellular patterns, and
their response to noise, is important because such

Fig. 2. Motion of a particle on a double-well potential func-
tion subject to noise. The system dynamics now lingers
intermittently between the two equilibrium states of the
deterministic system, independently of initial conditions.

knowledge can lead, for instance, to novel designs
and developments of new materials.

2. Modeling

To investigate the effects of noise on cellular
patterns, we consider in this work a stochas-
tic (Langevin) version of a generic example of a
cellular-pattern-forming dynamical system, known
as the Kuramoto–Sivashinsky (KS) equation
∂u

∂t
= η1u − (1 + ∇2)2u − η2(∇u)2 − η3u

3 + ξ(x, t),

(1)

where u = u(x, t) represents the perturbation of
a planar front (which is normally assumed to be a
flame front) in the direction of propagation, η1 mea-
sures the strength of the perturbation force, η2 is a
parameter associated with growth in the direction
normal to the domain (burner) of the front, η3u

3 is a
term that is added [Chate et al., 1993] to help stabi-
lize the numerical integration, and ξ(x, t) represents
Gaussian white noise, which models thermal fluctu-
ations, dimensionless in space and time. We assume
ξ(x, t) to be distributed with zero mean 〈ξ(x, t)〉 =
0, and to be uncorrelated over space and time, i.e.
〈ξ(x, t)ξ(x′, t′)〉 = 2Dδ(x−x′)δ(t− t′), where D is a
measure of the intensity of the noise, 〈·〉 represents
the time-average over a range of observations.

The Kuramoto–Sivashinsky equation describes
the perturbations of a uniform wave front by
thermo-diffusive instabilities. It has been stud-
ied in different contexts by Cross and Hohenberg
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[Cross et al., 1993], Armbruster, Guckenheimer
and Holmes [Armbruster et al., 1988], and by
Hyman and Nicolaenko [Hyman et al., 1986]. In
the context of combustion of premixed gases, in
particular, thermo-diffusive instability is caused
by the interaction of diffusion and conduction of
a gas flame [Palacios et al., 1997]. These stud-
ies show that, overall, thermo-diffusive instabilities
can lead to complex stationary and dynamic cel-
lular patterns, which emerge from the geometry
of the domain through the universal properties of
symmetry-breaking bifurcations. Another example
of a pattern-forming system relevant to this work is
that of Faraday waves [Faraday, 1831]. In that sys-
tem, cellular patterns similar to those of combustion
flames can be created on the free surface of a fluid
layer that is periodically vibrated if the amplitude
of the driving force is large enough to overcome the
dissipative effect of fluid viscosity.

2.1. Numerical stochastic method

The first numerical scheme for integrating the KS
model equation (1), without noise, and over a
two-dimensional circular domain, was completed
by Zhang et al. [1999] through the use of Dis-
tributed Approximating Functionals (DAFs). The
DAF approach allowed circumvention of certain
coordinate singularities that had previously made
the integration of the KS model sensitive to the
accuracy of the spatial derivatives. Shortly after the
scheme was completed, several stationary cellular
patterns with multiple rings and a few dynamic
states such as single rings of rotating cells were
observed but only for brief periods of time. The
resulting scheme was based on a local lineariza-
tion of the nonlinear terms in the KS equation and
was unstable for long-term simulations. In recent
work, we developed a Crank–Nicolson based inte-
gration scheme that solves the numerical instabil-
ity problem [Blomgren et al., 2005a]. The improved
scheme has helped us numerically simulate [Blom-
gren et al., 2005b], for long periods of time, a
wide variety of stationary and dynamic cellular pat-
terns, many of which had only been previously
observed in laboratory experiments [Gorman et al.,
1994]. In the present paper we build on our previ-
ous numerical scheme [Blomgren et al., 2005a] in
order to develop a new method to integrate the
stochastic version of the KS model (1). Next we
summarize the essentials and describe the modifica-
tions introduced for this paper. The scheme employs

distributed approximating functionals for calculat-
ing the derivatives with respect to space [Zhang
et al., 1999]. The scheme is second order in time,
based on the Crank–Nicolson scheme [Crank et al.,
1947], and is linearly unconditionally A-stable. In
order to numerically resolve the nonlinearity, the
scheme employs a Newton iteration in each time-
step, in which the resulting sequence of linear
systems are solved using the preconditioned Bi-
CGSTAB method [Vorst, 1992]. The preconditioner
is chosen to be the unchanging linear part of the
discretized operator.

Let x = (r, φ) represent the polar coordi-
nates of the circular domain, see Fig. 3, and let
F (x, t, u(x, t), ξ(x, t)) represent the right-hand side
of (1), so that ut(x, t) = F (x, t, u(x, t), ξ(x, t)).

Furthermore, for this discussion, we decom-
pose the right-hand side, F (x, t, u(x, t), ξ(x, t)) into
deterministic and stochastic parts, e.g.

F (x, t, u(x, t), ξ(x, t)) = Fdet(x, t, u(x, t))
+ Fsto(x, t, ξ(x, t)) (2)

where, Fsto(x, t, ξ(x, t)) = ξ(x, t). Since the stochas-
tic term is uncorrelated (white) in time, and
independent of u(x, t), we can evaluate the term
in the center of the time-step, i.e. at time t +
(h/2), thus solving (2) using the Crank–Nicolson

Fig. 3. The polar grid. Notice that the innermost points are
located at a radius r = dr/2; hence there is no computational
point at the center of the grid. The radial spacing is dr. In
our computations we use 32 radial points and 64 azimuthal
points, i.e. dr = R/32.5 and dφ = 2π/64.
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scheme [Crank et al., 1947] we get an equation for
the unknown u(x, t + h)

u(x, t + h) − u(x, t)
h

=
Fdet(x, t, u(x, t))

2
+

Fdet(x, t + h, u(x, t + h))
2

+ Fsto

(
x,

t + h

2
, ξ

(
x,

t + h

2

))
. (3)

Equation (3) leads to a nonlinear system of
equations of the form G(u(x, t + h)) = 0, which
we solve for u(x, t + h) using Newton’s method as
follows

un+1(x, t + h) = un(x, t + h) − [δG(un(x, t + h)]−1

·G(un(x, t + h)),
u0(x, t + h) = u(x, t)

Here δG = ∇uG(un(x, t+h) is the Jacobian. Since
Fsto(x, t + h/2, ξ(x, t + h/2)) does not depend on
u(x, t + h), it only affects the linear system as a
constant addition to G(u(x, t + h)), with no contri-
bution to the Jacobian. In each step of the Newton-
iteration we solve the linear system

[δG(un(x, t + h)]δu = G(un(x, t + h)). (4)

In our simulations, the grid is subdivided into
Nr = 32 radial points, and Nφ = 64 azimuthal
points, leading to a nearly dense 2048 × 2048 sys-
tems. We solve these systems using the precon-
ditioned biconjugate gradient stabilized method
(Bi-CGSTAB) [Barret et al., 1994].

Fig. 4. Representative examples of stationary states found in numerical simulations of the KS model (1), with ξ(x, t) = 0,
i.e. without noise.

2.2. Simulations

Computer simulations indicate a greater tendency
towards stationary states (as opposed to dynamic
states) in noise-free simulations of the KS model (1).
Stationary states are patterns with petal-like cellu-
lar structures and well-defined spatial symmetries.
Figure 4 illustrates a few examples. Dynamic states
are patterns in which the cells move, either individ-
ually or in ring configurations.

As the radius of the circular domain increases,
the typical ordered state that appears changes
from a single ring of cells to concentric rings of
cells. Occasionally, dynamic states are also observed
in the transition from one stationary pattern to
another. In previous work [Palacios et al., 1997], we
studied the selection mechanism behind this tran-
sition; in particular, we explained why cellular pat-
terns consist of rings of cells and also determined
the mechanisms that lead to some dynamic states.
More specifically, we found that uniformly rotat-
ing and modulated rotating single-ring states with
k cells were typically generated by the interaction of
two steady-state modes with Fourier wave numbers
in a k:2k ratio. We now focus our attention around a
1:2 mode interaction, though the analysis still cap-
tures many essential features of the effects of noise
on larger patterns. The diagram in Fig. 5 depicts the
transition that results from such mode interaction.
Without noise, i.e. noise amplitude D = 0, a one-
cell rotating state (1R) appears in the transition
from a one-cell stationary state to a two-cell station-
ary state, just as predicted by the corresponding 1:2
mode interaction.
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Fig. 5. Generic behavior of the KS model for various parameter values of radius and noise intensity. Notation: 1 = single cell,
2 = 2 cell. S = Stationary, U = Unsteady, I = Intermittent State, R = Rotation. Noise intensity, D = σ2/2, is in the range
[0.00, 2.5E-04]. This range represents low noise levels, relative to the dynamic range of u, which in the Kuramoto–Sivashinsky
equation is of order 10. As the noise intensity increases, the radius-parameter range of complex dynamic patterns is extended;
when the intensity reaches D = 1.25× 10−3 no static patterns are observed. For each of these simulations η1 = 0.32, η2 = 1.0,
η2 = 0.017, 4.1 ≤ radius ≤ 4.35, and D ≤ 0.5.

As the noise intensity increases, the domain
of existence of the 1R-state increases and addi-
tional patterns emerge, see Fig. 5. For very weak
noise, an unsteady dynamic pattern (1U) appears
between the 1S and 1R states. The 1U pattern
does not sustain rotations; instead, the pattern
rocks back and forth. With increased noise intensity,
a one-cell rotating pattern (1RI), which intermit-
tently changes its direction of rotation, is observed
between the 1U and 1R patterns. Near the bifur-
cation point, where the 1RI state forms, there are
two bistable branches of rotating states created by
symmetry, one branch for each direction of rota-
tion. Which branch is observed depends mainly
on initial conditions. Noise appears to act as a
switch, inducing recurrent transitions between these
two branches. Between the 1R and 2S (or, for
higher noise intensities, 2U) patterns, an intermit-
tent 1-2 cell pattern forms. This dynamic pattern
is very peculiar: one of the two cells in the 2S
state is extinguished; the remaining one-cell state
is short-lived, the pattern immediately splits into
a new 2S-state, the orientation of which is roughly
a quarter-rotation of the previous 2S-state. Each
appearance of the 2S state lasts an irregular amount
of time, ranging from a few to several hundreds of
frames. This is qualitative evidence of a heteroclinic

connection where the stable (unstable) manifold of
a two-cell equilibrium is also the unstable (stable)
manifold of another two-cell equilibrium. Until now,
this pattern had only been observed in laboratory
experiments [Gorman et al., 1994; Stone et al., 1996]
but not in computer models. Finally, a 2-cell ana-
logue (2U) of the 1U pattern forms between the 1-2I
and 2S patterns.

3. Analysis

3.1. Mode decomposition

In order to explain, quantitatively, the origin and
formation mechanisms of the noise-induced inter-
mittent pattern shown in Fig. 5, we perform next
a Proper Orthogonal Decomposition [Karhunen,
1946; Loève, 1955; Lumley, 1967; Palacios et al.,
1998; Sirovich, 1987a, 1987b, 1987c] analysis of
an ensemble, made up of about 4000 computer-
simulated spatio-temporal data points (frames), for
each individual case. To ensure that the POD
steady-state modes contain the correct symmetry
properties, we have taken special care of includ-
ing the average over the symmetry group, O(2),
of the experiment, in the ensemble average. In all
four cases, the POD analysis reveals that two pairs
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Fig. 6. A proper orthogonal decomposition analysis reveals that all four patterns of Fig. 5 are created from the mutual
interaction of two pairs of spatial modes whose wave numbers are in a 1:2 ratio. These modes were obtained using computer-
simulated ensembles of 4000 data set points of each individual pattern.

of modes with wave numbers in a 1:2 ratio capture
most of the dynamics, see Fig. 6.

The time-average (considered mode Φ0) is
shown first followed by four POD modes, Φ1–Φ4,
with the highest percentage of energy (see Appendix
for an exact definition). The actual amount of
energy in each mode is indicated below each mode.
Each mode shows some amount of symmetry. The
symmetry of the time-average, in particular, reflects
the O(2)-symmetry of the burner, even though none
of the instantaneous snapshots has this symme-
try. This feature is studied in more detail in [Dell-
nitz et al., 1994]. Φ1 and Φ2 show D1-symmetry,
meaning that one complete revolution leaves them
unchanged, while Φ3 and Φ4 show D2-symmetry,
i.e. the patterns are restored after half a revolu-
tion. Observe also that the energy is equally dis-
tributed among these two pairs of modes, which
together capture almost 90% of the original behav-
ior. It follows that intermittent behavior in all three
cases is created from the mutual interaction of two
invariant eigenspaces, V1 = span{Φ1,Φ2} and V2 =
span{Φ3,Φ4}, whose dihedral symmetries are in a
1 : 2 ratio, just as expected from direct inspection
of the transition diagram of Fig. 5. We postpone
further discussion of the 1RI and 1U patterns until
later when we compare results of the POD decom-
position with solutions of the associated amplitude
equations.

Next we examine results of the POD decom-
position of the 1-2I intermittent state. Figure 7
shows the time-dependent coefficients associated
with each individual POD mode. To help visualize
the actual transitions, we have added two markers,
a green circle and a red circle. The time between
the green (red) circle and the red (green) define
the beginning and end of a 2-cell (1-cell) pattern,
respectively. Observe that when the oscillations in

a1(t) and a2(t) have large amplitudes relative to
those of a3 and a4, the 1-cell pattern shows up.
The opposite relation, small amplitude in a1, a2 and
large amplitude in a3, a4, leads to the appearance
of the 2-cell pattern.

The heteroclinic saddle-node connections that
underlie the transitions between the 1-cell pattern
and the 2-cell state, can be observed better in the
phase-space portrait of Fig. 8. Black arrows indicate
the approximate direction of the flow around the
two saddle-nodes that are associated with a 2-cell
state, while there are four saddle-nodes that corre-
spond to the 1-cell state. This difference deserves
an explanation. Once a 2-cell state appears in the
simulations, there is only one distinct orthogonal
position in which the same pattern can reappear.
On the other hand, a 1-cell state has four orthogo-
nally distinct positions where it can reappear. These
geometric facts determine the structure of the phase
portrait of Fig. 8.

3.2. Amplitude equations

As was mentioned before, all three intermittent pat-
terns, 1RI, 1U, and 1-2I, emerge from the mutual
interaction of two pairs of spatial modes, {Φ1,Φ2}−
{Φ3,Φ4}, with wave numbers in a 1:2 ratio, while
the time evolution of each individual pattern is
determined by the amplitude coefficients a1(t)–a4(t)
that are associated with the spatial modes Φ1–Φ4,
respectively. The amplitude equations that govern
the evolution of the time-dependent coefficients are
derived from the 1-to-2 Fourier-mode interaction in
a system with O(2)-symmetry, i.e. the symmetry
group of rotations and reflections of the circular
domain. The deterministic version of these ampli-
tude equations in Birkhoff Normal Form has been
thoroughly studied by Armbruster et al. [1988]. The
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Fig. 7. Amplitude coefficients associated with the POD modes of the intermittent state 1-2I of Fig. 5. Horizontal axis denotes
time. Markers indicate beginning (green) and end (red) of a 2-cell pattern.

Langevin version below

ż1 = z̄1z2 + z1(µ1 + e11|z1|2 + e12|z2|2) + εη1(t)
ż2 = ±z2

1 + z2(µ2 + e21|z1|2 + e22|z2|2) + εη2(t),
(5)

where η1(t) and η2(t) are Gaussian white noise
functions, uncorrelated with zero mean and with
amplitude ε, has also been considered by Stone and
Holmes [1991] in a study of the effects of noise on
heteroclinic cycles. We will draw on their work when
we study the 1-2I intermittent pattern; but we will
also extend the analysis to other regions of param-
eter space in order to explain the evolution of the
1RI and 1U intermittent patterns. We start with the
1R pattern. According to the transition diagram of
Fig. 5, and to the POD relative phase-angles plots
of Fig. 10, it is reasonable to associate the temporal
evolution of the 1R pattern with that of a trav-
eling wave of the deterministic normal forms, i.e.
η1 = 0 and η2 = 0 in (5). We claim that the 1RI
pattern arises from noise perturbations of a trav-
eling wave solution of the normal forms. We prove
this claim next. For convenience, we let zj = reθji

and φ = 2θ1−θ2, so that we can rewrite (5) in polar

coordinates

ṙ1 = r1r2 cos φ + r1(µ2 + e11r
2
1 + e12r

2
2) + εη1(t)

ṙ2 = ±r2
1 cos φ + r2(µ4 + e21r

2
1 + e22r

2
2) + εη2(t)

φ̇ = −
(

2r2 ± r2
1

r2

)
sinφ. (6)

Observe that the noise functions η1 and η2 do
not appear, explicitly, in the last equation in (6),
which governs the evolution of the phase-difference
variable. We will show that noise can, however,
change the evolution of the phase difference through
the radial components r1 and r2. Consider the noise-
free system: η1 = 0 and η2 = 0. Traveling Waves
(TW) are equilibria of (5) in which the phase dif-
ference remains constant, though φ2 �= 0, π. In
physical space, TWs correspond to uniformly rotat-
ing patterns produced by evolution equations; e.g.
the 1R pattern that appears in simulations of the
Kuramoto–Sivashinsky model (1). Following Arm-
bruster et al., traveling waves (of the deterministic
system) are created via a pitchfork bifurcation from
the π-mixed mode solution (r1 �= 0, r2 �= 0, φ = π)
when 2r4 ± r2

2/r4 = 0, and φ2 = π, so that they
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Fig. 8. Phase-space portrait from time-dependent POD coefficients for an intermittent state 1-2I clearly capture saddle-node
connections between the stable and unstable manifolds associated with each individual ordered pattern, one with 1-cell and
one with 2-cell.

only exist in the “−” case or when r2
1 = 2r2

2 . Let-
ting e = 4e11 + 2e12 + 2e21 + e22, it can be shown
that TW solutions of (5), without noise, exist and
are stable for

−2µ1 − eµ2
1 + O(µ3

1) < µ2

< µ1

(
1 +

9(e22 − e12)
e − 3(e22 − e12)

)
+ O(µ2

1).
(7)

Consider now the noisy system. Direct calcula-
tions of the equilibria of (6) lead to

λr2 + er3
2 + ση3(t) = 0, (8)

where λ = 2µ1 + µ2 and η3 is also a Gaussian
white noise function, uncorrelated with zero mean,
but with amplitude σ =

√
3ε. When σ = 0,

Eq. (8) reduces to the normal form equation for
the pitchfork bifurcation that underlie the birth of
the TWs of the deterministic system. A more criti-
cal observation is the fact that additive white noise
does not modify qualitatively the solution set of a
codimension-one, perfect, pitchfork bifurcation [Juel
et al., 1997]. It follows that TW solutions, and their
stability properties, of the noisy system (5) nec-
essarily coincide with those of the deterministic,

σ = 0, system; and Eq. (7) is still valid for the noisy
system. But if the 1RI pattern is indeed a noise-
perturbed TW, then we seem to have an apparent
contradiction: how can noise change the direction of
rotation of the 1RI state if noise cannot modify the
qualitative properties of the pitchfork bifurcations
that lead to traveling waves? To clarify this subtle
issue, we need to take into account that equilib-
ria of (6) are now described by a probability den-
sity function p(ri, t). In the case of the pitchfork
bifurcation (8), p(r2, t) is governed by the following
Fokker–Planck equation

∂tp(r2, t) = −∂r(λr2 + er3
2)p(r2, t) +

σ2

2
∂rrp(r2, t).

(9)

Traveling waves solutions are described by sta-
tionary solutions of (9), which, in turn, yields the
stationary probability density function

ps(r2) = N exp
[(

2
σ2

)(
λ

r2
2

2
+ e

r4
2

4

)]
. (10)

Computer simulations, see Fig. 9, show that
this function changes from single to double peaked
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Fig. 9. Stationary probability density of the radial component of the pitchfork bifurcation that leads to TW solutions.

as λ increases across zero. In both cases, λ < 0
and λ > 0, the location of the peaks always coin-
cide with the steady states of the deterministic sys-
tem. As predicted by theory, noise does not modify
the qualitative characteristics of the underlying
pitchfork bifurcation. However, noise can change
the probability distribution around the steady-state
r2 = 0. Assuming λ > 0, we notice that as noise
intensity increases from zero, the proportion of time
spent by a typical solution of (6) around r2 =
0 increases continuously until it reaches a maxi-
mum, at which time the phase-difference angle is
no longer at an equilibrium, thus triggering a tran-
sition that changes the sign of the phase-difference
angle, and ultimately, the direction of rotation of
the wave. This cycle of events repeats itself at ran-
dom time-intervals as the system dynamics in r2

change back and forth between zero and the values

of the deterministic system. As for the 1U pattern,
since standing waves lie on the invariant subspace
φ = 0, or φ = π, noise perturbations of the radial
components r1 and r2 cannot destroy the invariance
of the subspaces because they do not enter, explic-
itly, into the dynamics of the phase angle. Conse-
quently, the only possible effect of noise variations
in r1 and r2 is to create small oscillations in the
phase-angle variable φ, thus rocking the wave back
and forth.

To further verify the validity of our previous
assertions, we compare in Fig. 10 the relative phase-
angle obtained from the amplitude coefficients asso-
ciated with each pair of POD modes (see Appendix
for an exact definition) with those from the normal
form equations. The linear variation of the phase
angles of the 1R pattern indicate that this pattern
rotates uniformly, in which a negative slope is also
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Fig. 10. Comparison of relative phase-angles for the patterns: 1R, 1U and 1RI, obtained from the POD analysis (left) and
from the normal form equations (right).

indicative of counter-clockwise rotations. In the 1U
state, the phase angles only jiggle back and forth
since the pattern does not make any revolutions.
In the 1RI pattern, however, the phase angles vary
enough to induce rotations but the variations are
accompanied with random changes in the direction
of rotation.

We now turn our attention to the 1-2I pat-
tern, which brings us back to the work of Stone and
Holmes [1991]. Among their findings, most relevant
to the analysis of the 1RI pattern, is the realization
that certain intermittent states can be described
as noise-induced “stochastic limit cycles” that are
created from the perturbation of heteroclinic orbits
connecting saddle-node equilibria of the determinis-
tic (ε = 0) normal forms. Furthermore, the passage
time of a typical orbit lingering near one of these
equilibrium points obeys the following probability
distribution function

P (t) =
2λ∆(t)e−∆2(t)

√
π(1 − e−2λt)

, (11)

where ∆(t) = δ[(ε2/λ)(e2λt−1)]−1/2, λ is the largest
unstable eigenvalue of the equilibrium points, ε is
the noise amplitude seen in (5), and δ is the size

of a neighborhood around the equilibrium points.
In Fig. 11 we calculate the passage times (verti-
cal bars) using numerical simulations of the 1-2I
pattern. The equilibrium points correspond to the

0 20 40 60
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0.08

0.1

0.12

time (T)

P
(T

)

Fig. 11. Passage times calculated (vertical bars) from
numerical simulations of the 1-2I intermittent pattern and,
(bold curve) by fitting the probability distribution function of
Eq. (11) with parameters: λ = 0.28, ε = 0.030, and δ = 0.20.
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two different orientations of the two-cell states that
appear intermittently. The bold curve is a fitting of
the probability distribution function P (t) given by
Eq. (11).

Figure 12 depicts the phase-space projection of
a typical trajectory of (5) onto the first two com-
ponents of z1 and the x-component of z2, which are
the analogous of the POD amplitude coefficients a1,
a2 and a3, respectively. The reconstructed pattern,
calculated through the following equation,

Urec(x, ti) =
4∑

k=1

zk(ti)Φk(x), i = 1, . . . ,M,

where M is the size of the ensemble, 4000 frames
in this case, is also shown immediately below the
phase-space projection. The resemblance of the
phase space with the POD phase-space projection of

Fig. 8 is clear. More importantly, the reconstructed
intermittent state is qualitatively similar, up to a
rotation, to the PDE simulations. The cell rotates
uniformly and, intermittently changes direction of
rotation. In summary, numerical calculations, the
curve fitting of P (t), and the phase-space recon-
struction of Fig. 12, are strong evidence that the
1-2I intermittent state is indeed a stochastic limit
cycle created from the perturbation of a heteroclinic
connection. Such connections would be unobserv-
able under noise-free conditions.

As a final remark, we wish to emphasize that
more complex intermittent transitions are also
found in simulations of the KS model (1). For
instance, Fig. 13 shows noise-induced intermittent
behavior in a two-ring configuration, which are
found in computer simulations of the Kuramoto–
Sivashinsky model (1) in the parameter region
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Fig. 12. Phase-space portrait from normal form equations.
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Fig. 13. (Left) For R = 13.101, D = 0.00125 and η1,2,3, as in Fig. 4, noise-induced intermittent behavior in a two-ring state
is observed in computer simulations of the Kuramoto–Sivashinsky model 1. Here, the transitions visit 9/3, 9/4, 10/4 and 6/3
two-ring states at intermittent intervals. (Right) A similar multiple-ring intermittent state found in laboratory experiments.
Courtesy of M. Gorman at the University of Houston.

defined by R = 13.101, D = 0.00125 and η1,2,3,
as in Fig. 4. In principle, our analysis of the 1:2
mode interaction can be readily extended to study
this more complex case of intermittency, except that
the normal forms for this and many other cases have
not yet been derived. The derivation of such normal
forms is, however, in our plans for future work.
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Appendix A

Modal Decomposition

In this appendix we provide a self-contained review
of basic definitions and properties of the Proper
Orthogonal Decomposition (POD) technique rel-
evant to this work and discuss how the method
can be applied to computer simulations in order
to separate spatial and temporal behavior. The
POD is a well-known technique for determin-
ing an optimal basis for the reconstruction of a
data set [Karhunen, 1946; Loève, 1955]. It has
been used in various disciplines that include fluid
mechanics [Holmes et al., 1996; Lumley, 1967],
identification and control in chemical engineering
[Graham et al., 1993], oceanography [Preisendorfer,
1988], and image processing [Pratt, 1991]. Depend-
ing on the discipline, the POD is also known as
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Karhunen-Loève decomposition, principal compo-
nents analysis, singular systems analysis, or singular
value decomposition.

A.1. Theoretical aspects

Let us consider a sequence of numerical and/or
experimental observations represented by scalar
functions u(x, ti), i = 1, . . . ,M . Without loss of gen-
erality, the time-average of the sequence, defined by

ū(x) = 〈u(x, ti)〉 =
1
M

M∑
i=1

u(x, ti), (A.1)

is assumed to be zero. The Proper Orthog-
onal Decomposition extracts time-independent
orthonormal basis functions, Φk(x), and time-
dependent orthonormal amplitude coefficients,
ak(ti), such that the reconstruction

u(x, ti) =
M∑

k=1

ak(ti)Φk(x), i = 1, . . . ,M (A.2)

is optimal in the sense that the average least squares
truncation error

εm =

〈∥∥∥∥∥u(x, ti) −
m∑

k=1

ak(ti)Φk(x)

∥∥∥∥∥
2〉

(A.3)

is minimized for any given number m ≤ M of basis
functions over all possible sets of orthogonal func-
tions. Here ‖·‖ is the L2-norm, ‖f‖2 = (f, f), where
(·, ·) denotes the standard Euclidean inner prod-
uct; 〈·〉 denotes an average operation, usually over
time; and the functions Φk(x) are called empir-
ical eigenfunctions, coherent structures, or POD
modes. In practice the state of a numerical model
is only available at discrete spatial grid points,
so that the observations that form the data set
are vectors rather than continuous functions. In
other words, D = (x1, x2, . . . , xN ), where xj is
the jth grid point and u(x, ti) is the vector ui =
[u(x1, ti), u(x2, ti), . . . , u(xN , ti)]T . The data set can
be obtained from numerical simulation, experimen-
tal investigation or a combination of the numerical
and experimental results. More importantly, it can
be shown that the eigenfunctions Φk are the eigen-
vectors of the the tensor product matrix

S(x,y) =
1
M

M∑
i=1

uiuT
i . (A.4)

A.2. Computational implementation:
Method of snapshots

A popular technique for finding the eigenvectors
of (A.4) is the method of snapshots developed by
Sirovich [1987a, 1987b, 1987c]. It was introduced as
an efficient method when the resolution of the spa-
tial domain (N) is higher than the number of obser-
vations (M). The method of snapshots is based on
the fact that the data vectors, ui, and the eigenvec-
tors Φk, span the same linear space [Holmes et al.,
1996; Sirovich, 1987a, 1987b, 1987c]. This implies
that the eigenvectors can be written as a linear com-
bination of the data vectors

Φk =
M∑
i=1

vk
i ui, k = 1, . . . ,M. (A.5)

After substitution in the eigenvalue problem,
S(x,y)Φ(y) = λΦ(x), the coefficients vk

i are
obtained from the solution of

Cv = λv, (A.6)

where vk = (vk
1 , . . . , vk

M ) is the kth eigenvector
of (A.6), and C is a symmetric M × M matrix
defined by [cij ] = (1/M)(ui,uj). Here (·, ·) denotes
the standard vector inner product, (ui,uj) =
u(x1, ti)u(x1, tj) + · · · + u(xN , ti)u(xN , tj). In this
way the eigenvectors of the N × N matrix S (A.4)
can be found by computing the eigenvectors of an
M×M matrix C (A.6), a preferable task if N � M .
The results presented in Sec. 3 were obtained with
an implementation of the method of snapshots.

A.3. Properties of the POD
decomposition

Since the kernel is Hermitian, S(x,y) = S∗(y,x),
according to Riesz Theorem [Riesz, 1990], it admits
a diagonal decomposition of the form

S(x,y) =
N∑

k=1

λkΦk(x)Φ∗
k(y). (A.7)

This fact is particularly useful when finding the
POD modes analytically. They can be read off from
the diagonal decomposition (A.7). Then the tempo-
ral coefficients, ak(ti), are calculated by projecting
the data set on each of the eigenfunctions

ak(ti) = (u(x, ti),Φk(x)), i = 1, . . . ,M. (A.8)

It can be shown that both temporal coefficients
and eigenfunctions are uncorrelated in time and
space, respectively [Holmes et al., 1996; Sirovich,
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1987a, 1987b, 1987c]. In addition, the POD modes
{Φk(x)} and the corresponding temporal coeffi-
cients, {ak(ti)}, satisfy the following orthogonality
properties

(i) Φ∗
j(x)Φk(x) = δjk

(ii) 〈aj(ti)a∗k(ti)〉 = δjkλj

where δjk represents the Kronecker delta function.
Property (ii) is obtained when the terms in

the diagonal decomposition (A.7) are compared
with the expression S(x,y) =

∑〈aj(ti)a∗k(ti)〉 ×
Φj(x)Φ∗

k(y). The non-negative and self-adjoint
properties of S(x,y) imply that all eigenvalues are
non-negative and can be ordered accordingly: λ1 ≥
λ2 · · · ≥ · · · ≥ 0. Statistically speaking, λk repre-
sents the variance of the data set in the direction
of the corresponding POD mode, Φk(x). In physi-
cal terms, if u represents a component of a velocity
field, then λk measures the amount of kinetic energy
captured by the respective POD mode, Φk(x). In
this sense, the energy measures the contribution of
each mode to the overall dynamics.

The total energy captured in a proper orthog-
onal decomposition of a numerical or experimental
data set is defined as the sum of all eigenvalues

E =
M∑

k=1

λk. (A.9)

The relative energy captured by the kth mode,
Ek, is defined by

Ek =
λk

M∑
j=1

λj

. (A.10)

Note that the cumulative sum of relative energies,∑
Ek, approaches one as the number of modes

in the reconstruction increases to M . The relative
phase-angle between two POD-time coefficients is
defined by

θij = arctan
(

ai

aj

)
. (A.11)




