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Alan Turing (1952)

∂u
∂t

= f (u, v) + Du
∂2u
∂x2

∂v
∂t

= g(u, v) + Dv
∂2v
∂x2 ,

(1)

where u = u(x , t), v = v(x , t), x represents space and t is time.

Novelty: Stable system + “Stabilizing” diffusion = Instability

A.M. Turing. The Chemical Basis of Morphogenesis.
Philosophical Transactions of the Royal Society of London.
Series B, Biological Sciences. Vol. 237, no. 641. (Aug. 14,
1952), pp. 37-72.
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Linear Stability

∂u
∂t

= f (u, v) + Du
∂2u
∂x2

∂v
∂t

= g(u, v) + Dv
∂2v
∂x2 ,

rewritten as
∂w
∂t

= F (w, µ) + D∇2w

where w = (u, v).

Let w0 = (u0, v0) be a homogeneous sol. and let w = w0 + δw, where

δw =
∑

j

cjeλj te−ikj ·x.

Substituting into linearized system about w0 = (u0, v0) yields:

(J − Dk2
j − λj )w = 0, (2)

where k2
j = ~kj · ~kj and

J =

(
∂uf ∂v f
∂ug ∂v g

)
(u0,v0)
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Dispersion relation
Solving Eq. (2) yields:

λ2+((Du +Dv )k2−fu−gv )λ+DuDv k4−k2(Dv fu +Dugv )+fugv−fv gu = 0

Pattern Selection Mechanism:

λ(k) predicts the growing wave modes: Wei~k·~r eλ(k)t .

Wave numbers k with Re{λ(k)} > 0 grow exponentially until the
nonlinearities in the reaction kinetics bound this growth.
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Critical Wave Number: Solve λ(kc) = 0 for kc

where
k2

c =
Dv fu + Dugv

2DuDv
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Kuramoto-Shivashinky Model

∂u
∂t

= εu − (1 +∇2)2u − η1(∇u)2 − η2u3,

where
u = u(x, t) ≡ perturbation of a planar front with strength ε,
η1 ≡ parameter associated with growth in the direction normal
to the circular domain (burner),
η2u3 is added to stabilize the numerical integration.
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Analysis: Proper Orthogonal Decomposition (POD)

Given a data set {u(x, t)} the POD extracts orthogonal basis
{ak (t),Φk (x)} such that the reconstruction

uapprox (x, t) = ũ +
M∑

k=1

ak (t) Φk (x),

is optimal in the sense that the average least squares
truncation error

en = 〈‖u((x, ti)− uapprox (x, t)‖2〉

where ũ is the time-average of the data set u(x, t).

Note: POD is also known as Principal Component Analysis.

Fall 2015 M636 Math Modeling



Overview
PDE Approach

Symmetry Approach

Turing Instability
Combustion
Analysis

Fall 2015 M636 Math Modeling



Overview
PDE Approach

Symmetry Approach

Turing Instability
Combustion
Analysis

3-Cell Hopping Pattern

A. Palacios, P. Blomgren and S. Gasner. Bifurcation analysis of
hopping behavior in cellular pattern-forming systems. Int. J. Bif.
and Chaos, 17, no. 2, (2007) 509-520.
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Analysis

u(x, t) = ũ + z2(t)Ψ21(x) + z3(t)Ψ31(x) + z4(t)Ψ41(x) + c.c.

where ũ is the time-average of the data set u(x, t).
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Idealization: Γ-Equivariant System of ODEs

dz
dt

= f (z, µ),

where Γ = O(2) represents the circular symmetry of the burner,
z = (z2, z3, z4) ∈ C3, and µ ∈ R3 are vectors of parameters.

Assume:
z = 0 to be “trivial solution” (planar front): f (0, µ) = 0.
Bifurcation occurs at µ = (0,0,0), so that V = ker(Df ) 6= 0.
L = (Df )0,(0,0,0) has three zero eigenvalues.
V = V2 ⊕ V3 ⊕ V4, where Vk = span{Re{Ψk1}, Im{Ψk1}}.
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Symmetry-Breaking Bifurcations

Under these assumptions, at µ = (0,0,0), the z = 0 uniform
solution loses stability and three O(2) symmetry-breaking
branches of steady-states modes interact with each other. The
action of Γ on C3 is generated by:

Group Action

θ · (z2, z3, z4) = (e2θiz2,e3θiz3,e4θiz4), θ ∈ SO(2),
κ · (z2, z3, z4) = (z̄2, z̄3, z̄4), κ = flip.
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Invariant Theory

Painful derivations . . . yield the amplitude equations (ODEs)

ż2 = z̄2z4 + α2z2
3 z̄4 + z2(µ2 + e22|z2|2 + e23|z3|2 + e24|z4|2)

ż3 = α3z2z̄3z4 + z3(µ3 + e32|z2|2 + e33|z3|2 + e34|z4|2)
ż4 = ±z2

2 + α4z2
3 z̄2 + z4(µ4 + e42|z2|2 + e43|z3|2 + e44|z4|2),

where α2, α3, and α4 are real-valued constants.
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Abstract Groups

A group Γ is a set {γ1, γ2, . . . } that satisfies:
Closure: γ × Γ −→ Γ or γ1γ2 = γ3 ∈ Γ

Associativity: (γ1γ2)γ3 = γ1(γ2γ3)

Identity: ∃e ∈ Γ st. γe = eγ = γ

Inverses: ∃γ−1 ∈ Γ st. γγ−1 = γ−1γ = e.

Examples:
ZN = {0,1, . . . ,N − 1}
S1 = Circle Group = {z ∈ C : |z| = 1}
GL(n): General linear group of real invertible n × n matrices.

O(n): Set of n × n orthogonal matrices, AT = A−1.
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Subgroups
A subgroup H ⊆ Γ is a subset that forms a group under the
same group operation.

Example:
ZN ⊂ DN or DN ⊂ O(n)

Let Γ = D3. Then H = Z2(κ) = {e,m} ⊂ D3.

Normal Subgroups
H is a normal subgroup of Γ if

γhγ−1 ∈ H, ∀γ ∈ Γ, ∀h ∈ H.
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Representations of Groups
A representation of a finite group or compact Lie group, over a
field, F , is a homomorphism ρ : Γ −→ GL(n,F ), i.e., ρ(γ) = Mγ .

The degree or dimension of the representation is n.
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Γ-Invariant Subspaces

A subspace W ⊂ V is Γ-invariant if θ(γ)w ∈W , ∀γ ∈ Γ and ∀w ∈W .
e.g.) W = {0} and W = V are always Γ-invariant.

Irreducible Representations

A representation or action of Γ is irreducible if the only Γ-invariant
subspaces are {0} and V .
e.g.) Trivial representation: ργ(x) = x .
e.g.) Γ = S1 acting on C: ρk

θ · z = eikθz.

Absolutely Irreducible Representations

An action or representation of Γ is said to be absolutely irreducible if
the only linear mappings that commute with the action of Γ on V are
scalar multiples of the identity.
e.g.) All 1D representations are abs. irrep, as is the natural rep. of D3.
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Characters
The character ξ(M) of an n × n matrix M is its trace:

ξ(M) =
n∑

i=1

Mii .
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Let Γ be a compact Lie group acting on a vector space V . ∃
Γ-irreducible subspaces Ui of V st.

V = U1 ⊕ U2 ⊕ . . .⊕ Um

Isotypic Decomposition

This decomposition is not unique. So let

W1 = U1 ⊕ U2 ⊕ . . .⊕ Un1
...

Wk = U1 ⊕ U2 ⊕ . . .⊕ Unk .

Then
V = W1 ⊕W2 ⊕ . . .⊕Wk , k < m,

is uniques and it is called the Isotypic Decomposition of V .
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Bifurcation Problem

dx
dt

= f (x , µ), x ∈ Rn, µ ∈ R

st. Jacobian ≡ (df )(x0,µ) and e-val{(df )(x0,µ)} = {0, . . .}.

Theorem

Γ is a symmetry group of ẋ = f (x , µ) iff γf (x , µ) = f (γx , µ).
Equivalently: Mγ f (x , µ) = f (Mγx , µ)

Isotropy Subgroups

The symmetry of a stationary sol x is given by Σx = {γ ∈ Γ : γx = x}

Fixed Point Subspaces of Subgroup Σ

Fix(Σ) = {x ∈ V : σx = x ,∀σ ∈ Σ}
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Each irrep leads to a bifurcation problem

dx
dt

= f (x , µ), x ∈ Rn, µ ∈ R

st. f (0,0) = 0, (df )(0,0) = 0 and Mγ f (x , µ) = f (Mγx , µ).

R1

1 · f (x , µ) = f (1 · x , µ)⇒ dx
dt

= µ+ ax2 + bxµ+ cµ2 + · · · ,

R2,R3,R4

−1 · f (x , µ) = f (−x , µ)⇒ dx
dt

= µx + ax3 + · · · ,
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R2: Z4 Pattern Formation

M+1 · v = v ,⇒ M+1 = {e, ρ, ρ2, ρ3} = Z4,

M−1 · v = v ,⇒ M−1 = {m,mρ,mρ2,mρ3}.
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R3 and R4

R3 : Z2
2 = {e, ρ2,m,mρ2},

R4 : Z2
2 = {e, ρ2,mρ,mρ3}.
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Pure Modes

(x1,0) : Z2(m) = {e,mρ2},
(0, x2) : Z2(m) = {e,m}.
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Mixed Modes

(x1, x2 = x1) : Z2(mρ) = {e,mρ},
(x1, x2 = −x1) : Z2(m) = {e,mρ3}.
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Planar Lattice
A planar lattice L is generated by two linearly independent vectors l1
and l2 ∈ R2 is

L = {~l = n1
~l1 + n2

~l2}

Dual Lattice L∗

L∗ = {n1
~k1 + n2

~k2 : ~ki ·~lj = 2πδij , i , j = 1,2}

Fourier Modes

u(x, t) =
∑

k∈L∗

zk (t)ei~k·~x + c.c.
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THANK YOU
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