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The subspaces were so named because orbits starting in £* decayed to zero
as t (resp. n for maps) T oo, orbits starting in E* became unbounded as ¢
(resp. n for maps) 1 oo, and orbits starting in E° neither grew nor decayed
exponentially as ¢ (resp. n for maps) T co.

If we suppose that £* = ), then we find that any orbit will rapidly decay
to E°. Thus, if we are interested in long-time behavior (i.e., stability) we
need only to investigate the system restricted to E°.

It would be nice if a similar type of “reduction principle” applied to the
study of the stability of nonhyperbolic fixed points of nonlinear vector fields
and maps, namely, that there were an invariant center manifold passing
through the fixed point to which the system could be restricted in order tc
study its asymptotic behavior in the neighborhood of the fixed point. That
this is the case is the content of the center manifold theory.

2.1A CENTER MANIFOLDS FOR VECTOR FIELDS

We will begin by considering center manifolds for vector fields. The set-up
is as follows. We consider vector fields of the following form

T = Az + f(z,y),
y=By+g(z,y), (2,9)eR°xR’, (2.1.2

f(0,0)=0, Df(0’0)201
9(0,0)=0, Dg(0,0) = 0. (2.1.3

o s 3 (See Section 1.1C for a discussion of how a general vector field is trans-
' formed to the form of (2.1.2) in the neighborhood of a fixed point.)
In the above, A is a ¢ X ¢ matrix having eigenvalues with zero real parts

B is an s x s matrix having eigenvalues with negative real parts, and f anc
g are C" functions (r > 2).

for (2.1.2) if it can locally be represented as follows

We(0) = {(z,y) € R° x R® | y = h(z), |z] < 6,h(0) = 0, DR(0) = 0}

for 6 sufficiently small.

We remark that the conditions h(0) = 0 and Dh(0) = 0 imply ths:

taken from the excellent book by Carr [1981].
The first result on center manifolds is an existence theorem.

2. Methods for Simplifying Dynamical Systems

DEFINITION 2.1.1 An invariant manifold will be called a center manifolé '

W€(0) is tangent to E° at (x,y) = (0,0). The following three theorems a-:
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origin is stable but not asymptotically stable). We will answer the question

of stability using center manifold theory.
From Theorem 2.1.1, there exists a center manifold for (2.1.11) which

can locally be represented as follows
We(0) = {(z,y) € R? | y = h(a), | o |< §,h(0) = DA(0) =0}  (2.1.12)

for 6 sufficiently small. We now want to compute We(0). We assume that
h(z) has the form

h(z) = az® + bz® + O(z*), (2.1.13)

and we substitute (2.1.13) into equation (2.1.10), which h(zx) must satisfy
to be a center manifold. We then equate equal powers of z, and in that
way we can compute h(z) to any desired order of accuracy. In practice,
computing only a few terms is usually sufficient to answer questions of
stability.

We recall from (2.1.10) that the equation for the center manifold is given
by L ) .

N (h(z)) = Dh(z) [Az + f (z, h(z))] - Bh(z) — g (&, h(z)) = 0, (2:1.14)

where, in this example, we have (z,y) € R?,

A =0,
B=-1,
f(z.y) =2y - 2°,
g(z,y) = =% (2.1.15)
Substituting (2.1.13) into (2.1.14) and using (2.1.15) gives
N (h{(z)) = (2az + 3be? + - - -)(az? + bz® — 4 --0)
+ax?+be® —2+---=0. (2.1.16)

In order for (2.1.16) to hold, the coefficients of each power of z must be
zero; see Exercise 2.20. Thus, equating coefficients on each power of z to

zero gives
2:a-1=0=>a=1,
z2 b =0,
(2.1.17)
and we therefore have
h(z) = £* + O(z"). (2.1.18)
Using (2.1.18) along with Theorem 2.1.1, the vector field restricted to the
center manifold is given by

& =2+ 0(z%). (2.1.19)
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For z sufficiently small, z = 0 is thus unstable in (2.1.19). Hence, by The-
orem 2.1.1, (z,y) = (0,0) is unstable in (2.1.11); see Figure 2.1.1 for an
illustration of the geometry of the flow near (z,y) = (0,0).

This example illustrates an important phenomenon, which we now de-
scribe.

The Failure of the Tangent Space Approzimation

The idea is as follows. Consider (2.1.11). One might expect that the y
components of orbits starting near (z,y) = (0,0) should decay to zero
exponentially fast. Therefore, the question of stability of the origin should
reduce to a study of the z component of orbits starting near the origin.
One might thus be very tempted to set y = 0 in (2.1.11) and study the
reduced equation

U=
g =

Theorems 2.1.!
to computing

a new depend:
by adding p n
goes through j
important wht
exists for all €
in Chapter 3

by perturbing
ter manifold ¢

&= —z°. (2.1.20)

This corresponds to approximating W¢(0) by E*. However, x = 0 is stable
for (2.1.20) and, therefore, we ould arrive at the wrong conclusion that
(z,y) = (0,0) is stable for (2.1.20). The tangent space approximation might
sometimes work, but, as this example shows, it does not always do so.

918 CENTER MANIFOLDS DEPENDING ON PARAMETERS of (z,e) = (0
) dimensional c¢
Suppose (2.1.2) depends on a vector of parameters, say ¢ € R”. In this case Let us now

we write (2.1.2) in the form rence theorem

i = Az + f(x,y,8), Wit ((

§ =By +g(z,y,), (z,9,€) € R x R® x RP, (2121

for § and 8 suf
£(0,0,0)=0,  Df(0,0,0) =0, the dynamics
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and we have the same assumptions on A and B as in (2.1.2), with f and g
also being C™ (r > 2) functions in some neighborhood of (z,y,¢) = (0,0,0).
An obvious question is why do we not allow the matrices A and B to depend
on ¢? This will be answered shortly.

The way in which we will handle parametrized systems is to include the
parameter € as a new dependent variable as follows

i = Az + f(x,y:¢€),
g =0, (z,¢,y) € R x RF x R®. (2.1.22)
y = By + g(x,y,¢),

At first glance it might appear that nothing is really gained from this action,
but we will argue otherwise.

Let us suppose we are considering (2.1.22) afresh. It obviously has a fixed
point at (x,¢,y) = (0,0,0). The matrix associated with the linearization
of (2.1.22) about this fixed point has ¢ + p eigenvalues with zero real part
and s eigenvalues with negative real part. Now let us apply center manifold
theory. Modifying Definition 2.1.1, a center manifold will be represented as
a graph over the z and £ variables, i.e., the graph of h(z,¢) for = and €
sufficiently small. Theorem 2.1.1 still applies, with the vector field reduced
10 the center manifold given by

?:L = Au -+ f(u, h(u, 5)35)»

¢ P
£=0, (u,e) € R® x R”. (2.1.23)

Theorems 2.1.2 and 2.1.3 also follow (we will worry about any modifications
=0 computing the center manifold shortly). Thus, adding the parameter as
a new dependent variable merely acts to augment the matrix A in (2.1.2)
by adding p new center directions that have no dynamics, and the theory
zoes through just the same. However, there is a new concept which will be
important when we study bifurcation theory; namely, the center manifold
exists for all ¢ in a sufficiently small neighborhood of £ = 0. We will learn
in Chapter 3 that it is possible for solutions to be created or destroyed
oy perturbing nonhyperbolic fixed points. Thus, since the invariant cen-
-er manifold exists in a sufficiently small neighborhood in both and ¢
o (z,€) = (0,0), all bifurcating solutions will be contained in the lower
dimensional center manifold.

Let us now worry about computing the center manifold. From the exis-
-=nce theorem for center manifolds, locally we have

WE(0) = { (z.e,y) € R® X R? x R® |y = h(z.€),|z| <&,
le| < 8, h(0,0) =0, Dh(0,0) = 0} (2.1.24)

Z5r & and 6 sufficiently small. Using invariance of the graph of h(x,€) under
-ae dynamics generated by (2.1.22) we have

i = D h(z,e)t + D:h(z, £)é = Bh(z.€) + g (2, h(z. £),€). (2.1.25)
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However,
i = Az + f (z, h(z,€),€),
=0 (2.1.26)

hence substituting (2.1.26) into (2.1.25) results in the following quasilinear
partial differential equation that h(z,€) must satisfy in order for its graph

to be a center manifold.

N (h(z,€)) = Dh(z,€) [Az + f (2, h(z,€), €)]
— Bh(z,€) — g(z,h(z,€),e) = 0. (2.1.27)

Thus, we see that (2.1.27) is very similar to (2.1.10).
Before considering a specific example we want to poi
fact. By considering € as a new dependent variable, terms such as

nt out an important

Zi€j, ]-SZSC7 1S3§pa

or

Yi€j» 1<i<s, 1<55p
become nonlinear terms. In this case, returning to a question asked at the
beginning of this section, the parts of the matrices A and B depending
on £ are now viewed as nonlinear terms and are included in the f and g
terms of (2.1.22), respectively. We remark that in applying center manifold
theory to a given system, it must first be transformed into the standard

form (either (2.1.2) or (2.1.22)).

ExXAMPLE 2.1.2 Consider the Lorenz equations

L = U(y - CC),
= pr+IT—Yy— T (z,y,2) € R3, (2.1.28)
:=—Fz+zy,

where o and 3 are viewed as fixed positive constants and jp is a parameter
(note: in the standard version of the Lorenz equations it is traditional
to put p = p — 1). It should be clear that (z,y,z) = (0,0,0) is a fixed
point of (2.1.28). Linearizing (2.1.28) about this fixed point, we obtain the

associated matrix

-0 O 0
1 -1 0 }. (2.1.29;
0 0 -8

(Note: recall, pz is a nonlinear term.)
Since (2.1.29) is in block form, the eigenvalues are particularly easy to

compute and are given by
0,—-0—1,-8, (2.1.30:
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2.1. Center Manifolds

with eigenvectors

1 c 0
11,1 -11,1014. (2.1.31)
0 0 1

Our goal is to determine the nature of the stability of (z,y,2) = (0,0,0)
for p near zero. First, we must put (2.1.?@) into the standard form (2.1.22).
Using the eigenbasis (2.1.31), we obtain the transformation

1 o 0 U
( ) = (1 -1 0) (v) (2.1.32)
0 0 1 w
U 1 1 o 0 T
v | = 1 -1 0 s 2.1.33
) ARET R B 2139

which transforms (2.1.28) into
L

‘ i\ [0 0 0\-fu
v]=|0 —(14+0) O v
w 0 0 -3 w (

‘ 1 (aﬁ(u+av)—ow(u+cxv)) 1

[SI -

with inverse

+ “—p(u+ ov) + w(u + ov)
50\ (1 o)u+ ow)(u—0)

p=0. (2.1.34)

y

Thus, from center manifold theory, the stability of (z,y,z) = (0,0,0) near
7 = 0 can be determined by studying a one-parameter family of first-
order ordinary differential equations on a center manifold, which can be
represented as a graph over the v and p variables, i.e.,

We(0) = { (u,v,w,5) €R* | v = h1(u, p), w = ha(u, p),
hi(0,0) = 0, Dh;(0,0) = 0,4 = 1,2} (2.1.35)

for u and p sufficiently small.

We now want to compute the center manifold and derive the vector field
on the center manifold. Using Theorem 2.1.3, we assume

U =hi(u,p) = a1’ + agup +azp’ + -+
i, = ho(u, p) = byu? + boup + bgp® + -+ - . (2.1.36)
Recall from (2.1.27) that the center manifold must satisfy

N(h(fE,E)) = Dmh(xa E) {AI + f(-'L': h(:L‘,E),E)}
— Bh(z,e) - g(z, h(z,€),€) =0, (2.1.37)
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where, in this example,

=u, v = (v,w), €=p, h = (hy, h2),

=0,

( (1+0) ) , (2.1.38)
flz,y,8) = 1 o= [op(u + ov) — cw(u + ov)),

1 (—p(u + ov) + w(u + ov) )
1+ \ (1+a)(utov)(u—v) /°

mba
|

g (:B ' Ys 5) =
In Figure 2.1.
terms such as
always a fixec
point of exch:
created and a

Substituting (2.1.36) into (2.1.37) and using (2.1.38) gives the two compo-
nents of the equation for the center manifold.

(21U + azp+---) [ﬁ_g (ﬁ(u +ohy) — ho{u + ahl))}

A simple cale
we will see th
Before leav’

(u+0’h1) = 0,

p ho
+(1+0)h1+1+0(u+ah1) T+o

(2bju +bap+--+) [L (f)(u +ohy) — ho(u+ ahl))]

l+o 1. Figure <
+ Bhy ~ (u+ohi)(u—hy) =0 (2.1.39) new def
. . . new sol
Equating terms of like powers to zero gives for each
aif(l+0)=0=0a1=0, by the v
Bby—1=0=b = %, (2.1.40) 2. gelfg;’
_ 1 ~1 not qual
upg: (1+a)a2+1+ O=>a2=m§, or chang
Bba =0=by =0.
2.1¢ THE
Then, using (2.1.40) and (2.1.36), we obtain DIRI

1

hi(u,p) = —muﬁ + Suppose we ¢
o

) T=A
ha(u,p) = Ul + - (2.1.41) y=b
z2=C

Finally, substituting (2.1.41) into (2.1.34) we obtain the vector field reduced
to the center manifold

where

.U o 4
U= o\ vt (2.1.42)
0.

p =




