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develop the theory for maps, the results will have immediate applica- Denoti
tions to periodic orbits of vector fields by considering the associated
Poincaré map (cf. Section 1.2A).

and we

2. In general, the coordinate transformations will be nonlinear functions
of the dependent variables. However, the important point is that these
coordinate transformations are found by solving a sequence of linear
problems.

3. The structure of the normal form is determined entirely by the nature
of the linear part of the vector field.

We now begin the development of the method.

2.2A4 NORMAL FORMS FOR VECTOR FIELDS

Consider the vector field
w = G(w), weR", (2.2.1: where Fj(z)
where G is C™, with r to be specified as we go along (note: in practice we We next ints

will need r > 4). Suppose (2.2.1) has a fixed point at w = wo. We- first
want to perform a few simple (linear) coordinate transformations that will

put (2.2.1) into a form which is easier to work with. where hy(y)

1. First we transform the fixed point to the origin by the translation T =
v =w — wy, v e R",
under which (2.2.1) becomes where “id” «
= Gv+wp) = H). (2.2.2:
zan be writt
2. We next “split off” the linear part of the vector field and write (2.2.2.
as follows )
o = DH(O) + H(v), (2.2.3
where H(v) = H(v) — DH(0)v. It should be clear that H(v) = so that (2.2
O(Jvf?).

3. Finally, let T be the matrix that transforms the matrix DH(0) intc

(real) Jordan canonical form. Then, under the transformation
where the ti

ed due to-
Now, for

v =Tz, (2.2.4

(2.2.3) becomes
& =T 'DH(0)Tz + T H(Tx).
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Denoting the (real) Jordan canonical form of DH(0) by .J, we have

J=T"'DH(0)T, (2.2.6)

and we define _
F(z) =T 'H(T=z)

so that (2.2.4) is é.Refnately written as .

i =Jz+ F(z), zeR™ (2.2.7)

We remark that the transformation (2.2.4) has simplified the linear
part of (2.2.3) as much as possible. We now begin the task of simpli-
fying the nonlinear part, F(z).

First, we Taylor expand F(z) so that (2.2.7) becomes
i =Jz + Fy(z) + Fa(z) + - + Froa(x) + O(l=]"), (2.2.8)

where F;(z) represent the order i terms in the Taylor expansion of F(z).
We next introduce the coordinate transformation

=Y+ hg(y), (2.2.9)
where ha(y) is second order in y. Substituting (2.2.9) into (2.2.8) gives

¢ = (id+Dha(y))y = Jy + Jha(y) + F2(y + ha(y))
FFs(y + h2(y) + -+ + Froa (y + ha(y)) + O(ly]"), (2.2.10)

where “id” denotes the n x n identity matrix. Note that each term

Fi(y + ha()), 2<k<r—1, (2.2.11)
can be written as

Fily) + O(yl**) + - + O(yl*), (2.2.12)
so that (2.2.10) becomes

(id +Dha(y)) = Jy + Jha(y) + Fa(y) + Fs(v)
+oo+ Boa(y) + Oy, (22.13)
where the terms Fy(y) represent the O(jy{*) terms which have been modi-

fied due to the coordinate transformation.
Now, for y sufficiently small,

(id +Dha(y)) (2.2.14)
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exists and can be represented in a series expansion as follows (see Exercise
2.7)
(id +Dhy(y)) ™" = id ~Dha(y) + O(lyl?). (2.2.15)

Substituting (2.2.15) into (2.2.13) gives
§=Jy+ Jha(y) — Dha(y)Jy + Fa(y) + Fa(y)
+oF Feoa(y) + Oyl (2.2.16)

Up to this point hy{y) has been completely arbitrary. However, now we
will choose a specific form for ha(y) so as to simplify the O(|y|?) terms as
much as possible. Ideally, this would mean choosing ha(y) such that

Dhy(y)Jy — Jha(y) = Fa(y). (2.2.17)

which would eliminate F»(y) from (2.2.16). Equation (2.2.17) can be viewed
as an equation for the unknown ha(y). We want to motivate the fact that,
when viewed in the correct way, it is in fact a linear equation acting on a
linear vector space. This will be accomplished by 1) defining the appropriate
linear vector space; 2) defining the linear operator on the vector space; and
3) describing the equation to be solved in this linear vector space (which
will turn out to be (2.2.17)). We begin with Step 1.

Step 1. The Space of Vector-Valued Monomials of Degree k, Hy. Let
{81, +,8n} denote a basis of R", and let y = (y1.---.yn) be coordinates
with respect to this basis. Now consider those basis elements with coeffi-
cients consisting of monomials of degree k, i.e.,

Wyg s, > my =k, (2.2.18)
j=1

where m; > 0 are integers. We refer to these objects as vector-valued mono-
mials of degree k. The set of all vector-valued monomials of degree k forms
a linear vector space, which we denote by Hy. An obvious basis for Hj con-
sists of elements formed by considering all possible monomials of degree k
that multiply each s;. The reader should verify these statements. Let us
consider a specific example.

ExaMPLE 2.2.1 We consider the standard basis

.f._-((l)) , (‘;): € (2.2.19)

on R? and denote the coordinates with respect to this basis by = and v, .

respectively. Then we have

s ()-(2)-(5).(2)-(2)-(2))- s
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Step 2. The Linear Map on Hj,. Now let us reconsider equation (2.2.17). It
should be clear that hy(y) can be viewed as an element of Hz. The reader
should easily be able to verify that the map

ha(y) — Dha(y)Jy — Jha(y) (2.2.21)

is a linear map of Ha into H». Indeed, for any element hx(y) € Hg, it
similarly follows that

hi(y) — Dhi(y)Jy — Jhi(y) (2.2.22)

is a linear map of Hy into Hy.

Let us mention some terminology associated with Equation (2.2.17) that
has become traditional. Due to its presence in Lie algebra theory (see, e.g.,
Olver [1986]) this map is often denoted as

Ly (h(y)) = —(Dhi(9)Jy = Jha(w)) (2.2.29)

or

— (Dhi(y)Jy — Jhi(y)) = [he(y), Tyl (2.2.24)

where [-,-] denotes the Lie bracket operation on the vector fields hy(y) and
Jy.

Step 3. The Solution of (2.2.17). We now return to the problem of solving
(2.2.17). It should be clear that F>(y) can be viewed as an element of Ho.
From elementary linear algebra, we know that H can be (nonuniquely)

represented as follows

Hs = L;(H) = Ga. (2.2.25)

where G, represents a space complementary to L 7(Ha). Solving (2.2.17)
is like solving the equation Ar = b from linear algebra. If Fy(y) is in the
range of Ly(-), then all O(|y!?) terms can be eliminated from (2.2.17). In
any case, we can choose ha(y) so that only (’)(Ile) terms that are in Ga
remain. We denote these terms by

Fi{y) € G2 (2.2.26)

(note: the superscript r in (2.2.26) denotes the term "resonance.” which
will be explained shortly).
Thus. (2.2.16) can be simplified to

g=Jy~F+ By = a0y, (2.2.27)
At this point the meaning of the phrase -simplifv the second-order terms”
should be clear. It means the introduction of a coordinate change such that.
in the new coordinate system. the only second-order terms are in a space
complementary to Lj(H3). If L;(Hz) = Ha. then all second-order terms
can be eliminated.
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Next let us simplify the O(|y|) terms. Introducing the coordinate change
Y~y + ha(y), (2.2.28)

where ha(y) = O(Jy|*) (note: we will retain the same variables y in our
equation), and performing the same algebraic manipulations as in dealing
with the second-order terms, (2.2.27) becomes
¥ = Jy+ F5(y) + Jhs(y) — Dha(y)Jy + F3(y) + Fa(y)
+o o Fra(y) + Oy, (2:2.29)
where the terms F k(y), 4 < k < r -1, indicate, as before, that the coor-

dinate transformation has modified the terms of order higher than three.
Now, simplifying the third-order terms involves solving

Dhs(y)Jy — Jhs(y) = Fa(y). (2.2.30)
The same comments as for second-order terms apply here. The map

hs(y) — Dha(y)Jy — Jhs(y) = ~L(ha(y)) (2.2.31)

is a linear map of Hj into Hs. Thus, we can write
H3 = L;(H3) @ G3, (2.2.32)

where G3 is some space complementary to L;(Hs). Thus, the third-order
terms can be simplified to
Fi(y) € Gs. (2.2.33)

If L;{H;) = Hj, then the third-order terms can be eliminated.
Clearly, this procedure can be iterated so that we obtain the following
normal form theorem.

Theorem 2.2.1 (Normal Form Theorem) By a sequence of analytic
coordinate changes (2.2.8) can be transformed into

g=Jy+F(y)+ -+ F_1(y) + Oy, (2.2.34)

where F(y) € Gi, 2 < k < r—1, and Gy is a space complementary to
L;j(Hy). Equation (2.2.84) is said to be in normal form.

Several comments are now in order.

1. The terms F[(y), 2 < k < r — 1, are referred to as resonance terms
(hence the superscript r). We will explain what this means in Section
2.2D).

2. The structure of the nonlinear terms in (2.2.34) is determined entirely
by the linear part of the vector field (i.e., J).
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3. It should be clear that simplifying the terms at order k does not
modify any lower order terms. However, terms of order higher than
k are modified. This happens at each step of the application of the
method. If one wanted to actually calculate the coefficients on each
term of the normal form in terms of the original vector field, it would
be necessary to keep track of how the higher order terms are modified
by the successive coordinate transformations.

EXAMPLE 2.2.2 We want to compute the normal form for a vector field
on R? in the neighborhood of a fixed point where the linear part is given
by ‘

(33

(2.2.35)

Second-Order Terms

We have

e (2).(2)-(5).(2).(5) () com

We want to compute L ;(Hy). We do this by computing the action of L;(:)
on each basis element on Hy .

s (7)= (5 8 (3)- (% 9 (1) - (55) (%),

2
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From (2.2.37) we have

i =o{(37).(£)-(0)-( )

2
zy \ (¥ 9
(_yZ),(O)}. (2.238)
Clearly, from this set, the vectors
—2zy Ta z? Ty
() () () () eam

are linearly independent and, hence, second-order terms that are linear
combinations of these four vectors can be eliminated. To determine the
nature of the second-order terms that cannot be eliminated (i.e., FJ(y)),
we must compute a space complementary to L;(Hs). This space, denoted
(2, will be two dimensional.

In computing G5 it will be useful to first obtain a matrix representation
for the linear operator Ls(-). This is done with respect to the basis given
in (2.2.36) by constructing the columns of the matrix from the coefficients
multiplying each basis element that are obtained when L;(-) acts individ-
ually on each basis element of Hy given in (2.2.36). Using (2.2.37), the
matrix representation of L;(-) is given by

0 0 0 1 0 O
-2 0 0 0 1 0
0 -1 0 ¢ 0 1
O 0 0 0 0 0 (2.2.40)
0 0 0 -2 0 O
0 0 0 0 -10

One way of finding a complementary space G2 would be to find two “6-
vectors” that are linearly independent and orthogonal (using the standard
inner product in IR®) to each column of the matrix (2.2.40), or, in other
words, two linearly independent left eigenvectors of zero for (2.2.40). Due
to the fact that most entries of (2.2.40) are zero, this is an easy calculation,

and twq such vectors are found to be

;- e - -
2-yETOE 1

C\—“ - " . - ya ."’

Hence, the vectors
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span a two-dimensional subspace of H, that is complementary to L;(Hy).
This implies that the normal form through second-order is given by

E=y+a12° +O(3),
U= aszy + asz?® + 0(3),

(2.2.43)

where a1, as, and a3 represent constants.
Now our choice of G, is certainly not unique. Another choice might be

z? 0
Gs :span{( 0 ) , <$2)} (2.2.44)
This complementary space can be obtained by taking the vector
2 s
( z ) (2.2.45)
2Ty
given in (2.2.42) and subtracting from it the vector
0 ) o
(—%zy) 2 ) 3 (2.2.46)
contained in L ;(H,). This gives the vector ;
z? :
( 0 ) . (2.2.47)

For the other basis element of the complementary space, we simply retain

the vector
0
72

given in (2.2.42). With this choice of G, the normal form becomes

(2.2.48)

f=y+ar?+0(3).
¥ =ax* + 0(3). (2.2.49)
This normal form near a fixed point of a planar vector field with linear part

given by (2.2.35) was first studied by Takens [1974].
Another possibility for Gy is given by

6o {(8).(3)}

where these two vectors are obtained by adding the appropriate linear

combinations of vectors in L;(Ha) to the vectors given in (2.2.38). With

this choice of G the normal form becomes
r=y+0(3).
§=a1z%+byry + O(3):

(2.2.50)

(2.2.51)

this is the normal form for a vector field on R® near a fixed point with
dnear part given by {2.2.35) that was first studied by Bogdanov [1975].




